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Abstract Unsatisfiable cores (UCs) are a well established means for debugging in a declar-
ative setting. Still, there are few tools that perform automated extraction of UCs for LTL.
Existing tools compute a UC as an unsatisfiable subset of the set of top-level conjuncts of
an LTL formula. Using resolution graphs to extract UCs is common in other domains such
as SAT. In this article we construct and optimize resolution graphs for temporal resolution
as implemented in the temporal resolution-based solver TRP++, and we use them to extract
UCs for propositional LTL. The resulting UCs are more fine-grained than the UCs obtained
from existing tools because UC extraction also simplifies top-level conjuncts instead of treat-
ing them as atomic entities. For example, given an unsatisfiable LTL formula of the form
φ ≡ (Gψ)∧Fψ ′ existing tools return φ as a UC irrespective of the complexity of ψ and
ψ ′, whereas the approach presented in this article continues to remove parts not required
for unsatisfiability inside ψ and ψ ′. Our approach also identifies groups of occurrences of
a proposition that do not interact in a proof of unsatisfiability. We implement our approach
in TRP++. Our experimental evaluation demonstrates that our approach (i) extracts UCs
that are often significantly smaller than the input formula with an acceptable overhead and
(ii) produces more fine-grained UCs than competing tools while remaining at least com-
petitive in terms of run time and memory usage. The source code of our tool is publicly
available.

Keywords LTL · unsatisfiable cores · resolution graphs · vacuity · temporal resolution

1 Introduction

1.1 Motivation

Debugging is an activity that many hardware and software developers spend a fair amount
of time on. When faced with some input that induces an undesired behavior it is typically
suggested to minimize that failure-inducing input in order to simplify identification of the
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problem (e.g., [98]). Corresponding research has been performed, e.g., in linear program-
ming (e.g., [20]), constraint satisfaction (e.g., [6]), compilers (e.g., [97]), SAT (e.g., [16]),
description logics (e.g., [81]), declarative specifications (e.g., [89]), and LTL satisfiability
(e.g., [83]) and realizability (e.g., [23]).

LTL [36] and its relatives (e.g., [35, 63, 74]) are important specification languages for
reactive systems (e.g., [35, 63]) and for business processes (e.g., [74]). Experience in ver-
ification as well as in synthesis has lead to specifications themselves becoming objects of
analysis. Beer et al. report [9] that in their experience “[...] during the first formal verification
runs of a new hardware design, typically 20 % of formulas are found to be trivially valid,
and that trivial validity always points to a real problem in either the design or its specifica-
tion or environment.”. In a work on LTL synthesis [15] Bloem et al. state that “[...] writing
a complete formal specification [...] was not trivial.” and “Although this approach removes
the need for verification [...] the specification itself still needs to be validated.”.

Typically, a specification is expected to be satisfiable. If it turns out to be unsatisfiable,
finding a reason for unsatisfiability can help with the ensuing debugging. Frequently, such
a reason for unsatisfiability is taken to be a part of the unsatisfiable specification that is by
itself unsatisfiable (e.g., [83, 6, 20]); this is called an unsatisfiable core (UC) (e.g., [83, 42,
100, 50]).

Less simplistic ways to examine an LTL specification φ exist [75], and understanding
their results also benefits from availability of UCs. First, one can ask whether a certain
scenario φ ′, given as an LTL formula, is permitted by φ , i.e., whether in a situation, in which
the specification φ holds, the scenario φ ′ can occur. That is the case iff φ ∧φ ′ is satisfiable.
Second, one can check whether φ ensures a certain LTL property φ ′′. φ ′′ holds in φ iff
φ ∧¬φ ′′ is unsatisfiable. In the first case, if the scenario turns out not to be permitted by the
specification, a UC can help to understand which parts of the specification and the scenario
are responsible for that. In the second case a UC can show which parts of the specification
imply the property. Moreover, if there are parts of the property that are not part of the UC,
then those parts of the property could be strengthened without falsifying the property in the
specification; i.e., the property is vacuously satisfied (e.g., [9, 65, 2, 44, 92, 40, 64]).

UCs are therefore an important part of design methods for embedded systems (e.g., [75])
as well as for business processes (e.g., [3]). Note that specifications of real world systems
may be 100s of pages long (e.g., [19]). Hence, providing automated support for obtaining a
UC in case such a specification turns out to be unsatisfiable is crucial.

1.2 Contributions

Fine-Grained UCs for LTL Despite the relevance of UCs for LTL as outlined above inter-
est in them has been somewhat limited (e.g., [22, 83, 3, 84, 43, 46, 47]). In particular,
publicly available tools that automatically extract UCs for propositional LTL are scarce.
We are aware of two such tools: PLTL-MUP1 [43] and procmine2 [3].
The UCs produced by PLTL-MUP and procmine are somewhat coarse-grained in the
following sense. Both tools take as input a set of LTL formulas φ .3 If that set of LTL
formulas is unsatisfiable, then they produce a subset φ uc ⊆ φ that is still unsatisfiable.
However, they treat the LTL formulas that are the elements of φ as atomic entities; i.e.,

1 http://www.timsergeant.com/pltl-mup/
2 http://users.cecs.anu.edu.au/~rpg/BusinessProcessModelling/procmine.zip
3 A set of LTL formulas φ is interpreted as the conjunction of all formulas in φ .
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they do not analyze whether all subformulas of the LTL formulas that make up φ uc are
required for unsatisfiability.
In this article we propose an approach that takes an LTL formula as input and determines
for each node in the syntax tree whether the subformula rooted at that node is nec-
essary for unsatisfiability. Hence, if φ ≡ {G(p∧ψ),F((¬p)∧ψ ′)}, then PLTL-MUP and
procmine will return φ as UC irrespective of the complexity of ψ and ψ ′. Our approach
takes (G(p∧ψ))∧F((¬p)∧ψ ′) as input and returns (G(p∧ TRUE))∧F((¬p)∧ TRUE)
as UC.

UCs for LTL via Temporal Resolution Extracting UCs is often possible using any solver
for the logic under consideration by weakening subformulas one by one and using the
solver to test whether the weakened formula is still unsatisfiable (e.g., [68]). Although
that is simple to implement, repeated testing for preservation of unsatisfiability may im-
pose a significant run time burden. A potential alternative are methods that extract UCs
by analyzing a single run of a solver. It is interesting to investigate such methods because
they might not only reduce the run time burden but could also reveal additional infor-
mation on why a formula is unsatisfiable (see, e.g., Sec. 5.2 and [84]). Extracting UCs
from resolution graphs is common in SAT (e.g., [99]). A resolution method (e.g., [5])
for LTL, temporal resolution (TR), was suggested by Fisher [37, 39] and implemented
in TRP++ [54, 53]. TRP++ is available as source code4.
TR lends itself as a basis for extracting UCs for LTL for two reasons. First, the TR-
based solver TRP++ proved to be competitive in a recent evaluation of solvers for LTL
satisfiability, in particular on unsatisfiable instances (see pp. 51–55 of the full version
of [87]). Second, a TR proof naturally induces a resolution graph, which provides a
clean framework for extracting a UC. Among the other solvers evaluated in [87] we
mention the BDD-based solver NuSMV [21] and the tableau-based solvers LWB [49] and
pltl5. Although NuSMV also performed well on unsatisfiable instances in [87], the BDD
layer makes extraction of a UC more involved than a TR proof. On the other hand, LWB
and pltl provide access to a proof of unsatisfiability comparable to TR, yet tended to
perform worse than TRP++ on unsatisfiable instances in [87].
In this article we show how to obtain a UC from an execution of the TR algorithm as im-
plemented in TRP++. At the heart of our method is the construction of a resolution graph
for TR for propositional LTL; note that TR is significantly more complex than proposi-
tional resolution. We also show how to use the specifics of TR in TRP++ to optimize the
construction of the resolution graph.

Interaction of Occurrences of Propositions in a UC A resolution graph contains not
only information on which parts of the input formula were used to derive unsatisfia-
bility but also how these parts were used. We therefore suggest to exploit the resolution
graph to provide more detailed information on unsatisfiability. In this article we use the
resolution graph to point out which occurrences of atomic propositions interact in a UC.
In a companion paper [84], which this article provides the basis for, we use it to show
which subformulas are relevant for unsatisfiability at which points in time.

Mapping a UC in Separated Normal Form to a UC in LTL A potential disadvantage of
using TR for extracting UCs for LTL is the fact that TR does not work directly on
LTL but on a clausal normal form called Separated Normal Form (SNF) [37, 38, 39].
Translations from an LTL formula into an equisatisfiable formula in a clausal normal
form are well known both in temporal resolution (e.g., [37, 38, 39]) and in (symbolic)

4 http://www.csc.liv.ac.uk/~konev/software/trp++/
5 http://users.cecs.anu.edu.au/~rpg/PLTLProvers/
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model checking (e.g., [66, 18, 26, 60, 13]). However, for optimal support of a user who
tries to track down the source of the unsatisfiability of a formula it is likely to be helpful
if the UC that is presented to her is “syntactically close” to the formula that she provided
as an input to the solver. Hence, it is necessary to map a UC obtained in SNF back to
LTL. We show how to translate a UC from SNF back to the LTL formula that the user
provided as an input.

Reductions Between UCs for LTL and Mutual Vacuity We discuss the relation between
UCs for LTL and mutual vacuity [44]. Specifically, we prove that the problem of mutual
vacuity for a system and a specification described by an LTL formula is reducible to the
problem of finding a UC for an LTL formula and vice versa.

Publicly Available Implementation We implement our method in TRP++. We make the
source code of our solver publicly available.

Experimental Evaluation Our experimental evaluation demonstrates that our approach
(i) is viable in terms of the run time and memory overhead that it induces, (ii) can
significantly reduce the size of an unsatisfiable input formula, and (iii) is competitive to
alternative approaches, while it produces more fine-grained results.

UCs also have applications in avoiding the exploration of parts of a search space that
can be known not to contain a solution for reasons “equivalent” to the reasons for previous
failures (e.g., [28, 22]) and in certifying the correctness of a result of unsatisfiability (e.g.,
[96, 42, 100]). These applications also benefit from our results. Nevertheless, we only focus
on debugging.

1.3 Related Work

As discussed above we are aware of two tools that compute UCs for LTL: PLTL-MUP and
procmine; both produce UCs that are less fine-grained than the ones obtained with our
approach. They also rely on different algorithms to determine the satisfiability of an LTL
formula and to subsequently extract a UC from an unsatisfiable formula. PLTL-MUP, which
appeared after an early version of this work [82] was made public, applies an approach to
determine minimal UCs by Huang for SAT [52] to a BDD-based solver for LTL. procmine
extracts UCs as part of a tool set for synthesizing business process templates. It uses a
tableau-based solver to obtain an initial subset of an unsatisfiable set of LTL formulas and
then applies deletion-based minimization to that subset. In principle also tools to determine
mutual vacuity for LTL can be used to obtain UCs for LTL. However, none of the tools we
considered turned out to be suitable for that task in practice. For details see Sec. 6.

In [22] Cimatti et al. perform extraction of UCs for PSL to accelerate a PSL satisfia-
bility solver by performing Boolean abstraction. Their notion of UCs is coarser than ours
and their solver is based on BDDs and on SAT. An investigation of notions of UCs for LTL
including the relation between UCs and vacuity is performed by the author in [83]. Various
notions based on syntax trees, on conjunctive normal forms, on tableaux, and on SAT-based
bounded model checking (e.g., [12]) are discussed. One of the translations from LTL into a
conjunctive normal form is very similar to the one used in this article. It is accompanied by a
translation back from the conjunctive normal form to an LTL formula, but it assumes a min-
imal UC as its input. In some cases it provides more information than the translation from
SNF back to LTL used in this article. For example, it points out that a positive polarity oc-
currence of an until formula can be replaced with a weak until formula. That feature is left as
future work in this article. No implementation or experimental results are reported, and TR
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is not considered. Hantry et al. suggest a method to extract UCs for LTL in a tableau-based
solver [46]. No implementation or experiments are reported. In [47] the decision and search
problems for minimal UCs for LTL are shown to be PSPACE- and FPSPACE-complete,
respectively. In [25] Cimatti et al. show how to prove and explain unfeasibility of message
sequence charts for networks of hybrid automata. They consider a different specification
language and use an SMT-based (e.g., [7]) algorithm.

Some work deals with unrealizable rather than unsatisfiable cores. [23] handles speci-
fications in GR(1), which is a proper subset of LTL. Könighofer et al. present methods to
help debugging unrealizable specifications by extracting unrealizable cores and simulating
counterstrategies [61] as well as performing error localization using model-based diagnosis
[62]. Raman and Kress-Gazit [78] present a tool that points out unrealizable cores in the
context of robot control. [83] explores more fine-grained notions of unrealizable cores than
[23, 61].

In vacuity Simmonds et al. [92] use SAT-based bounded model checking for vacuity de-
tection. They only consider k-step vacuity, i.e., taking into account bounded model checking
runs up to a bound k, and leave the problem of removing the bound k open. They use a simi-
lar scheme as described in Sec. 5.2 on proofs of unsatisfiability of propositional formulas to
determine whether some proposition is vacuous. They only distinguish whether in a proof of
unsatisfiability of a bounded model checking instance any occurrence of a given proposition
in the specification interacts with any occurrence of that proposition in the system or not.
Armoni et al. [2] discuss vacuity of an LTL specification in different polarity occurrences of
subformulas. For a more extensive discussion on the relation between vacuity and UCs for
LTL we refer to Sec. 6 and to [83].

Many algorithmic considerations are shared between UCs for LTL and UCs for other
logics. Here we mention some work that can serve as starting point for studying UCs for
other logics as well as work that contains ideas that might be applicable also to UCs for
LTL. Extensive research has been performed on UCs for SAT. For a brief overview of early
algorithms see, e.g., [70], pp. 68–70. Surveys of different aspects are, e.g., [68, 69, 17].
Early work on UCs for SMT was performed by Cimatti et al. in [24]. Pointers to work on
modifying proofs in order to obtain smaller proofs and/or different interpolants (for some
references see, e.g., [34]) in the propositional or SMT cases can be found in [79]. Some of
this work traces which occurrences of literals were resolved with each other (e.g., [1]). Belov
and Marques-Silva [11] and Shlyakhter [88] investigate UCs for circuits, i.e., formulas with
potential sharing of subformulas rather than sets of clauses. UCs obtained from a SAT solver
are also used to support debugging in the declarative modeling language Alloy [89, 95].
This requires translation from Alloy into an input for a SAT solver and back [89]; while the
description in [89] is somewhat abstract, some basic ideas regarding the translation from
Alloy into the input for the SAT solver and back are similar to ideas used in our translation.
Also in their case a minimal UC obtained from the SAT solver does not guarantee a minimal
UC in Alloy. [95] evaluates schemes to increase the efficiency of the UC extraction method.
In description logics (e.g., [4]) UCs are frequently used to support knowledge engineers
in performing their tasks. In particular, understanding, debugging, and possibly repairing
entailments in an ontology can be aided by providing the user with subsets of axioms of an
ontology that justify a given entailment. Some work also considers parts of axioms, leading
to more fine-grained results. For an overview see, e.g., [51].
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1.4 Structure of the Article

We start in Sec. 2 by providing examples that illustrate how UCs are useful for debugging.
In Sec. 3 the more formal exposition begins with preliminaries. In Sec. 4 we describe the
construction and optimization of a resolution graph and its use to obtain a UC. In Sec. 5
we adapt two methods to post-process the UCs obtained to make them more useful. The
relation between UCs for LTL and mutual vacuity is discussed in Sec. 6. We present our
implementation and experimental evaluation in Sec. 7. In Sec. 8 we draw conclusions.

Due to space constraints a few more involved parts of a proof as well as some more
detailed data from our experimental evaluation are omitted. Both are included in the full ver-
sion [86] of this article, which can be obtained from http://www.schuppan.de/viktor/

actainformatica15/ along with implementation, examples, and log files.

2 Motivating Examples

In this section we present examples of using UCs for LTL to help understand why a speci-
fication given in LTL is unsatisfiable. As we formally introduce LTL only in Sec. 3.1, those
unfamiliar with LTL are asked to jump ahead to Sec. 3.1 first. We start with a toy example
and then proceed to a more realistic one. Except for minor rewriting, all UCs in this section
were obtained with our implementation.

2.1 Toy Example

The first example (1a)–(1c) is based on [56]. (1a) requires a req (request) to be followed by
three gnts (grant). In contrast, (1b) forbids two subsequent gnts. (1c) states that from the
time point after a cancel no gnt may be issued until a go is received. We would like to see
whether a req can eventually be issued (1d).

(G(req→ ((Xgnt)∧ (XXgnt)∧XXXgnt))) (1a)

∧ (G(gnt→ X¬gnt)) (1b)

∧ (G(cancel→ X((¬gnt)Ugo))) (1c)

∧ Freq (1d)

Clearly, (1) is unsatisfiable. If a req were issued in (1d), (1a) would trigger three sub-
sequent gnts. However, already the second of those gnts would be forbidden by (1b). Note
that in this reasoning neither the third gnt in (1a) nor (1c) play a role. Hence, (1) would be
unsatisfiable even if XXXgnt and (G(cancel→ X((¬gnt)Ugo))) were “removed”. The UC
in (2) does just that by replacing these two subformulas with TRUE and simplifying. Note
that in (2) not only a whole top-level conjunct has been removed from (1) but also a proper
subformula inside a top-level conjunct.

(G(req→ ((Xgnt)∧XXgnt)))∧ (G(gnt→ X¬gnt))∧Freq (2)

2.2 Lift Specification

The second example (3) in Fig. 1 is adapted from a lift specification in [48]. The lift has
two floors, indicated by f0 and f1. On each floor there is a button to call the lift (b0, b1). sb

http://www.schuppan.de/viktor/actainformatica15/
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(¬u)∧ f0 ∧ (¬b0)∧ (¬b1)∧ (¬up) (3a)

∧ (G((u→¬Xu)∧ ((¬Xu)→ u))) (3b)

∧ (G( f0→¬ f1)) (3c)

∧ (G(( f0→ X( f0 ∨ f1))∧ ( f1→ X( f0 ∨ f1)))) (3d)

∧ (G(u→ (( f0→ X f0)∧ ((X f0)→ f0)∧ ( f1→ X f1)∧ ((X f1)→ f1)))) (3e)

∧ (G((¬u)→ ((b0→ Xb0)∧ ((Xb0)→ b0)∧ (b1→ Xb1)∧ ((Xb1)→ b1)))) (3f)

∧ (G(((b0 ∧¬ f0)→ Xb0)∧ ((b1 ∧¬ f1)→ Xb1))) (3g)

∧ (G(( f0 ∧X f0)→ ((up→ Xup)∧ ((Xup)→ up)))) (3h)

∧ (G(( f1 ∧X f1)→ ((up→ Xup)∧ ((Xup)→ up)))) (3i)

∧ (G((( f0 ∧X f1)→ up)∧ (( f1 ∧X f0)→¬up))) (3j)

∧ (G((sb→ (b0 ∨b1))∧ ((b0 ∨b1)→ sb))) (3k)

∧ (G(( f0 ∧¬sb)→ ( f0U(sbR((F f0)∧¬up))))) (3l)

∧ (G(( f1 ∧¬sb)→ ( f1U(sbR((F f0)∧¬up))))) (3m)

∧ (G((b0→ F f0)∧ (b1→ F f1))) (3n)

Fig. 1 A lift specification

is TRUE if some button is pressed. If the lift moves up, then up must be TRUE; if it moves
down, then up must be FALSE. u switches turns between actions by users of the lift (u is
TRUE) and actions by the lift (u is FALSE). For more details we refer to [48].

We first assume that an engineer is interested in seeing whether it is possible that b1
is pressed at time point 0 (4). As the UC (5) shows, this is impossible because b1 must be
FALSE at the beginning. (5) was obtained by conjoining (3) with (4), determining unsatisfi-
ability, replacing all top-level conjuncts except for ¬b1 and b1 with TRUE, and simplifying.

b1 (4)

(¬b1)∧b1 (5)

Now the engineer modifies her query such that b1 is pressed at time point 1 (6). As
shown by the UC in (7) that turns out to be impossible, too. Note that while in the previous
scenario (4) unsatisfiability was not too hard to see even without UC extraction, in the cur-
rent scenario (6) UC extraction already is quite helpful in localizing which parts of (3) and
(6) are responsible for unsatisfiability. The UC in (7) was obtained by conjoining (3) with
(6), determining unsatisfiability, replacing all top-level conjuncts except for ¬u, ¬b1, (3f),
and Xb1 with TRUE, replacing b0 → Xb0, (Xb0)→ b0, b1 → Xb1 in (3f) with TRUE, and
simplifying. As in the toy example in the previous subsection not only top-level conjuncts
but also proper subformulas inside a top-level conjunct have been simplified.

Xb1 (6)

(¬u)∧ (¬b1)∧ (G((¬u)→ ((Xb1)→ b1)))∧Xb1 (7)

The engineer now tries to have b1 pressed at time point 2 and, again, obtains a UC. She
becomes suspicious and checks whether b1 can be pressed at all (8). The unsatisfiability of
the conjunction of (3) and (8) tell her that b1 cannot be pressed at all and, therefore, this
specification of a lift must contain a bug. She can now use the UC in (9) to track down
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the problem. This example clearly illustrates the use of UCs for debugging as (9a)–(9f) is
significantly smaller than (3).

Fb1 (8)

f0∧ (¬b1)∧ (¬up) (9a)

∧ (G( f0→¬ f1)) (9b)

∧ (G( f0→ X( f0∨ f1))) (9c)

∧ (G(( f0∧X f0)→ ((Xup)→ up))) (9d)

∧ (G(( f0∧X f1)→ up)) (9e)

∧ (G(b1→ F f1)) (9f)

∧ Fb1 (9g)

3 Preliminaries

In this section we first present LTL (Sec. 3.1). We continue with SNF, the clausal normal
form for LTL that the temporal resolution algorithm works on, (Sec. 3.2) and with a trans-
lation from LTL into SNF (Sec. 3.3). Finally, in Sec. 3.4 we discuss the temporal resolution
algorithm that our method for UC extraction in Sec. 4 is based on.

3.1 LTL

We use a standard version of LTL, see, e.g., [36]. Let B be the set of Booleans, and let AP
be a finite set of atomic propositions. The set of LTL formulas is constructed inductively
as follows. The Boolean constants FALSE, TRUE ∈ B and any atomic proposition p ∈ AP
are LTL formulas. If ψ , ψ ′ are LTL formulas, so are ¬ψ (not), ψ ∨ψ ′ (or), ψ ∧ψ ′ (and),
Xψ (next time), ψUψ ′ (until), ψRψ ′ (releases), Fψ (finally), and Gψ (globally). We use
ψ → ψ ′ (implies) as an abbreviation for (¬ψ)∨ψ ′. An occurrence of a subformula ψ of
an LTL formula φ has positive polarity (+) if it appears under an even number of negations
in φ and negative polarity (−) otherwise. The size of an LTL formula φ is measured as the
sum of the numbers of occurrences of atomic propositions, Boolean operators, and temporal
operators in φ .

LTL is interpreted over words in (2AP)ω . For the semantics of LTL see Fig. 2. A word
π ∈ (2AP)ω satisfies an LTL formula φ iff (π,0) |= φ . A word π that satisfies φ is also
called a satisfying assignment for φ . An LTL formula φ is satisfiable if there exists a word
π ∈ (2AP)ω that satisfies φ ; otherwise, it is unsatisfiable. The problem of determining the
satisfiability of an LTL formula is PSPACE-complete [93, 45], even if the set of atomic
propositions AP only contains one element [30].

3.2 Separated Normal Form

Temporal resolution works on formulas in a clausal normal form called Separated Nor-
mal Form (SNF) [37, 38, 39]. For any atomic proposition p ∈ AP p and ¬p are literals.
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(π, i) |= TRUE
(π, i) 6|= FALSE
(π, i) |= p ⇔ p ∈ π[i]
(π, i) |= ¬ψ ⇔ (π, i) 6|= ψ

(π, i) |= ψ ∨ψ ′ ⇔ (π, i) |= ψ or (π, i) |= ψ ′

(π, i) |= ψ ∧ψ ′ ⇔ (π, i) |= ψ and (π, i) |= ψ ′

(π, i) |= Xψ ⇔ (π, i+1) |= ψ

(π, i) |= ψUψ ′ ⇔ ∃i′ ≥ i . ((π, i′) |= ψ ′ ∧∀i≤ i′′ < i′ . (π, i′′) |= ψ)
(π, i) |= ψRψ ′ ⇔ ∀i′ ≥ i . ((π, i′) |= ψ ′ ∨∃i≤ i′′ < i′ . (π, i′′) |= ψ)
(π, i) |= Fψ ⇔ ∃i′ ≥ i . (π, i′) |= ψ

(π, i) |= Gψ ⇔ ∀i′ ≥ i . (π, i′) |= ψ

Fig. 2 Semantics of LTL. π is a word in (2AP)ω , i is a time point inN.

Let p1, . . . ,pn, q1, . . . ,qn′ , l with 0 ≤ n,n′ be literals such that ∀1 ≤ i < i′ ≤ n . pi 6= pi′

and ∀1 ≤ i < i′ ≤ n′ . qi 6= qi′ . Then (i) (p1∨ . . .∨pn) is an initial clause; (ii) (G(p1 ∨
. . .∨pn∨X(q1∨ . . .∨qn′))) is a global clause; and (iii) (G(p1∨ . . .∨pn∨Fl)) is an eventu-
ality clause. l is called an eventuality literal. As usual an empty disjunction (resp. conjunc-
tion) stands for FALSE (resp. TRUE). () or (G()), denoted 2, stand for FALSE or G(FALSE)
and are called empty clause. The set of all SNF clauses is denoted C. Let c1, . . . ,cn with
0≤ n be SNF clauses. Then

∧
1≤i≤n ci is an LTL formula in SNF. Every LTL formula φ can

be transformed into an equisatisfiable formula φ ′ in SNF [39].

3.3 Translating LTL into SNF

We use a structure-preserving translation (e.g., [76]) to translate an LTL formula into a set
of SNF clauses. Our translation is based on the tableau construction for LTL that is often
used in (symbolic) model checking (see, e.g., [66, 18, 26, 60, 13]) rather than on [39] as we
find the former to be more straightforward.

Definition 1 (Translation from LTL into SNF) Let φ be an LTL formula over atomic
propositions AP, and let X = {x,x′, . . .} be a set of fresh atomic propositions that don’t occur
in φ . Assign to each occurrence of a subformula ψ in φ a Boolean value or a proposition
according to column 2 of Tab. 1, which is used to reference ψ in the SNF clauses for its
superformula. Moreover, assign to each occurrence of ψ a set of SNF clauses according to
columns 3 and 4 of Tab. 1. Let SNFaux(φ) be the set of all SNF clauses obtained from φ that
way. Then the SNF of φ is defined as SNF(φ)≡ xφ ∧

∧
c∈SNFaux(φ) c.

Note that to make the SNF clauses in column 4 of Tab. 1 and elsewhere in this article
easier to understand we often use implication to formulate them. However, in TRP++ SNF
clauses cannot contain implications and, therefore, in our implementation of Def. 1 implica-
tion is expanded using its definition. The fact that some propositions are marked blue boxed
in Tab. 1 will be used later in Sec. 4.2 when translating a UC back from SNF to LTL. It is
well known that φ and SNF(φ) are equisatisfiable and that a satisfying assignment for φ

(resp. SNF(φ)) can be extended (resp. restricted) to a satisfying assignment for SNF(φ)
(resp. φ ). Below we sometimes identify the SNF of φ , SNF(φ), with the set of SNF clauses
{xφ}∪SNFaux(φ) that SNF(φ) is constructed from.

Remark 1 (Complexity Considerations Regarding the Translation from LTL into SNF) Let
φ be an LTL formula over atomic propositions AP, and let SNF(φ) be the SNF of φ . It is
easy to see that (i) the number of clauses in SNF(φ) is linear in the size of φ , (ii) for each
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Table 1 Translation from LTL into SNF
Subformula Proposition Polarity SNF Clauses
TRUE/FALSE/p TRUE/FALSE/p +/− none
¬ψ x¬ψ + (G(x¬ψ →¬ xψ ))

− (G((¬x¬ψ )→ xψ ))

ψ ∨ψ ′ xψ∨ψ ′ + (G(xψ∨ψ ′ → ( xψ ∨ xψ ′ )))

− (G((¬xψ∨ψ ′ )→¬ xψ )),
(G((¬xψ∨ψ ′ )→¬ xψ ′ ))

ψ ∧ψ ′ xψ∧ψ ′ + (G(xψ∧ψ ′ → xψ )),
(G(xψ∧ψ ′ → xψ ′ ))

− (G((¬xψ∧ψ ′ )→ ((¬ xψ )∨¬ xψ ′ )))

Xψ xXψ + (G(xXψ → X xψ ))

− (G((¬xXψ )→ X¬ xψ ))

ψUψ ′ xψUψ ′ + (G(xψUψ ′ → ( xψ ′ ∨ xψ ))),
(G(xψUψ ′ → ( xψ ′ ∨XxψUψ ′ ))),
(G(xψUψ ′ → F xψ ′ ))

− (G((¬xψUψ ′ )→¬ xψ ′ )),
(G((¬xψUψ ′ )→ ((¬ xψ )∨X¬xψUψ ′ )))

ψRψ ′ xψRψ ′ + (G(xψRψ ′ → xψ ′ )),
(G(xψRψ ′ → ( xψ ∨XxψRψ ′ )))

− (G((¬xψRψ ′ )→ ((¬ xψ ′ )∨¬ xψ ))),
(G((¬xψRψ ′ )→ ((¬ xψ ′ )∨X¬xψRψ ′ ))),
(G((¬xψRψ ′ )→ F¬ xψ ′ ))

Fψ xFψ + (G(xFψ → F xψ ))

− (G((¬xFψ )→ X¬xFψ )),
(G((¬xFψ )→¬ xψ ))

Gψ xGψ + (G(xGψ → XxGψ )),
(G(xGψ → xψ ))

− (G((¬xGψ )→ F¬ xψ ))

occurrence of a Boolean or temporal operator in φ one fresh atomic proposition x,x′, . . . is
introduced in SNF(φ) by the translation, and (iii) the size of SNF(φ) is linear in the size of
φ .

As an example we translate the formula φ shown in (10) into SNF.

φ ≡ (G(p∧q))∧F¬p (10)

The SNF of φ , SNF(φ), is given in (11). x(G(p∧q))∧F¬p represents (G(p∧q))∧F¬p in the
sense that if in a satisfying assignment for SNF(φ) x(G(p∧q))∧F¬p is TRUE at time point
i, then (G(p∧q))∧F¬p is TRUE at time point i on that assignment. The same holds for
the other fresh atomic propositions xG(p∧q), xp∧q, xF¬p, and x¬p in SNF(φ).6 Together
(x(G(p∧q))∧F¬p) and (G(x(G(p∧q))∧F¬p→ xG(p∧q))) force xG(p∧q) to be TRUE at time point
0. Similarly, xF¬p is forced to be TRUE at time point 0 via (G(x(G(p∧q))∧F¬p→ xF¬p)).
G(p∧q) is translated into four clauses (G(xG(p∧q)→ XxG(p∧q))), (G(xG(p∧q)→ xp∧q)),
(G(xp∧q→ p)), and (G(xp∧q→ q)). With xG(p∧q) being TRUE at time point 0 the first of
these four clauses makes xG(p∧q) TRUE at all time points. The remaining three clauses then

6 Note that in our example fresh atomic propositions x,x′, . . . in SNF(φ) only represent positive polarity
occurrences of subformulas. If there were a negative polarity occurrence of some subformula ψ represented
by some fresh atomic proposition xψ , then xψ being FALSE at time point i in a satisfying assignment for φ

would imply ψ being FALSE at time point i on that assignment.
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make p and q TRUE continuously. Using the truth of xF¬p at time point 0 the two last clauses
(G(xF¬p→ Fx¬p)) and (G(x¬p→¬p)) ensure that ¬p becomes TRUE eventually. Last but
not least notice that — as (10) is obviously unsatisfiable — there can be no such satisfying
assignment for SNF(φ).

SNF(φ) =

{(x(G(p∧q))∧F¬p),
(G(x(G(p∧q))∧F¬p→ xG(p∧q))),
(G(xG(p∧q)→ XxG(p∧q))),
(G(xG(p∧q)→ xp∧q)),
(G(xp∧q→ p)),
(G(xp∧q→ q)),
(G(x(G(p∧q))∧F¬p→ xF¬p)),
(G(xF¬p→ Fx¬p)),
(G(x¬p→¬p))}.

(11)

3.4 Temporal Resolution in TRP++

In this subsection we describe temporal resolution (TR) [39] as implemented in TRP++

[53, 54]. We provide a concise description of TR in TRP++ as required for the purposes
of this article (Sec. 3.4.1), followed by an example (Sec. 3.4.2). Temporal resolution has
been developed since the early 1990s [37], and an extensive body of literature exists. It is
out of the scope of this article to provide a detailed introduction or a tutorial on the subject.
The following references are among the most suitable as an introduction to TR as needed
for this article: [39] provides a general overview of the method and is a good starting point,
[32, 33] explains BFS loop search as used in TRP++, and [54] covers the implementation of
TR in TRP++. In [82] we provide some intuition on temporal resolution with a slant towards
BDD-based symbolic model checking (e.g., [27]).

3.4.1 The Temporal Resolution Algorithm in TRP++

The production rules of TRP++ are shown in Tab. 2. The first column assigns a name to a
production rule. The second and fourth columns list the premises. The sixth column gives
the conclusion. Columns 3, 5, and 7 are described below.

The algorithm in Fig. 3 provides a high level view of TR in TRP++ [54]. The algorithm
takes a set of starting clauses C in SNF as input. It returns unsat if C is found to be un-
satisfiable (by deriving 2) and sat otherwise. Resolution between two initial or two global
clauses or between an initial and a global clause is performed by a straightforward extension
of propositional resolution (e.g., [5]). This is expressed in the five production rules listed un-
der saturation in Tab. 2. Given a set of SNF clauses C we say that one saturates C, if one
applies these production rules to clauses in C until the empty clause 2 has been derived, or
until no new clauses are generated. Resolution between a set of initial and global clauses
and an eventuality clause with eventuality literal l requires finding a set of global clauses
that allows one to infer conditions under which XG¬l holds. Such a set of clauses is called
a loop in ¬l. TRP++ implements the BFS approach to loop search [32, 33, 31]. Loop search
involves all production rules in Tab. 2 except init-ii , init-in , step-nn , and step-nx .

In line 1 the algorithm in Fig. 3 initializes M with the set of starting clauses and ter-
minates iff one of these is the empty clause. Then, in line 2, it saturates M (terminating iff
the empty clause is generated). In line 3 it augments M by applying production rule aug1 to
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Table 2 Production rules used in TRP++. Let P ≡ p1 ∨ . . .∨pn, Q ≡ q1 ∨ . . .∨qn′ , R ≡ r1 ∨ . . .∨ rn′′ , and
S≡ s1 ∨ . . .∨ sn′′′ .

rule premise 1 part. premise 2 part. conclusion part.
saturation

init-ii (P∨ l) M ((¬l)∨Q) M (P∨Q) M
init-in (P∨ l) M (G((¬l)∨Q)) M (P∨Q) M
step-nn (G(P∨ l)) M (G((¬l)∨Q)) M (G(P∨Q)) M
step-nx (G(P∨ l)) M (G(Q∨X((¬l)∨R))) M (G(Q∨X(P∨R))) M
step-xx (G(P∨X(Q∨ l))) ML (G(R∨X((¬l)∨S))) ML (G(P∨R∨X(Q∨S))) ML

augmentation
aug1 (G(P∨Fl)) M (G(P∨ l∨wl)) M
aug2 (G(P∨Fl)) M (G((¬wl)∨X(l∨wl))) M

BFS loop search
BFS-loop-it-init-x c≡ (G(P∨X(q1 ∨ . . .∨qn′ ))) with n′ > 0 M c L
BFS-loop-it-init-n (G P) M (GXP) L
BFS-loop-it-init-c (G P) L′ (G(Q∨Fl)) M (GX(P∨ l)) L

BFS-loop-it-sub c≡(G P) with c→ (G Q) L (GX(Q∨ l)) generated
by BFS-loop-it-init-c L

BFS-loop-
conclusion1

(G P) L (G(Q∨Fl)) M (G(P∨Q∨ l)) M

BFS-loop-
conclusion2

(G P) L (G(Q∨Fl)) M (G((¬wl)∨X(P∨ l))) M

Input: A set of SNF clauses C.
Output: Unsat if C is unsatisfiable; sat otherwise.

1 M←C; if 2 ∈M then return unsat;
2 saturate(M); if 2 ∈M then return unsat;
3 augment(M);
4 saturate(M); if 2 ∈M then return unsat;
5 M′← /0;
6 while M′ 6= M do
7 M′←M;
8 for c ∈C . c is an eventuality clause do
9 C′←{2};

10 repeat
11 initialize-BFS-loop-search-iteration(M, c, C′, L);
12 saturate-step-xx(L);
13 C′←{c′ ∈ L | c′ has empty X part};
14 C′′←{(G Q) | (GX(Q∨ l)) ∈ L generated by BFS-loop-it-init-c };
15 found← subsumes(C′, C′′);
16 until found or C′ = /0;
17 if found then
18 derive-BFS-loop-search-conclusions(c, C′, M);
19 saturate(M); if 2 ∈M then return unsat;

20 return sat;

Fig. 3 LTL satisfiability checking via TR in TRP++

each eventuality clause in M and aug2 once per eventuality literal in M, where wl is a fresh
proposition. This is followed by another round of saturation in line 4.7 From now on the al-
gorithm in Fig. 3 alternates between searching for a loop for some eventuality clause c (lines

7 Here we report the algorithm as implemented in the version of TRP++ that we obtained. There saturation
is performed directly before and directly after augmentation.
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9–18) and saturating M if loop search has generated new clauses (line 19). It terminates if
either the empty clause was derived (line 19) or if no new clauses were generated (line 20).

Loop search for some eventuality clause c may take several iterations (lines 11–15).
Each loop search iteration uses saturation restricted to step-xx as a subroutine (line 12). Cor-
rectness of BFS loop search requires that each BFS loop search iteration has its own set
of clauses L in which it works. We call M and L partitions. The set of partitions is a set
of sets; i.e., a clause may appear in several partitions but not more than once in any one
partition. Columns 3, 5, and 7 in Tab. 2 indicate whether a premise (resp. conclusion) of a
production rule is taken from (resp. put into) the main partition (M), the loop partition of
the current loop search iteration (L), the loop partition of the previous loop search iteration
(L′), or either of M or L as long as premises and conclusion are in the same partition (ML).
In line 11 partition L of a loop search iteration is initialized by applying production rule
BFS-loop-it-init-x once to each global clause with non-empty X part in M, rule BFS-loop-it-init-n

once to each global clause with empty X part in M, and rule BFS-loop-it-init-c once to each
global clause with empty X part in the partition of the previous loop search iteration L′. No-
tice that by construction at this point L contains only global clauses with non-empty X part.
Then L is saturated using only rule step-xx (line 12). A loop has been found iff each global
clause with empty X part that was derived in the previous loop search iteration is subsumed
by at least one global clause with empty X part that was derived in the current loop search
iteration (lines 13–15). Subsumption between a pair of clauses corresponds to an instance
of production rule BFS-loop-it-sub ; note, though, that this rule does not produce a new clause
but records a relation between two clauses to be used later for extraction of a UC. Loop
search for c terminates if either a loop has been found or no clauses with empty X part were
derived (line 16). If a loop has been found, rules BFS-loop-conclusion1 and BFS-loop-conclusion2

are applied once to each global clause with empty X part that was derived in the current loop
search iteration (line 18) to obtain the loop search conclusions for the main partition.

The TR method with a BFS algorithm for loop search, which is implemented in TRP++,
is a sound and complete decision procedure for the satisfiability of a set of SNF clauses [53,
54, 39, 32, 33, 31]. We are not aware of a detailed complexity analysis of TR as implemented
in TRP++; for complexity analyses of parts of the TR method relevant to the implementation
in TRP++ see [39, 33]. To understand the complexity of our extension of the algorithm in
Fig. 3 for the extraction of UCs proposed in this article we are mainly interested in the size
of the resolution graph that we will construct from an execution of the algorithm in Fig. 3.
This will be analyzed in Lemma 1.

3.4.2 Example

We now continue the example from Sec. 3.3. We would like to execute the algorithm in
Fig. 3 on the SNF of φ ≡ (G(p∧q))∧F¬p. For technical reasons we make some minor
modifications. First, when translating φ into a set of SNF clauses C our implementation
treats top level conjuncts as separate formulas. We therefore separately translate G(p∧q)
and F¬p according to Def. 1. Second, while the use of implication makes the SNF clauses
in column 4 of Tab. 1 easier to understand, implication is not an operator that is available
for SNF clauses in TRP++. Hence, we syntactically expand implication using its definition.
Third, due to space constraints in Fig. 4 we replace the formula indices in the fresh atomic
propositions x,x′, . . . with numerical indices. Fourth, we remove some parentheses and let
the negation and next time operators bind stronger than the or operator. The modified SNF



14 Viktor Schuppan

of φ , C, is shown in (12). x1 corresponds to xG(p∧q), x2 to xp∧q, x3 to xF¬p, and x4 to x¬p.

C ≡

{x1,
G(¬x1∨Xx1),
G(¬x1∨ x2),
G(¬x2∨ p),
G(¬x2∨q),
x3,
G(¬x3∨Fx4),
G(¬p∨¬x4)}.

(12)

In Fig. 4 we show an execution of the algorithm in Fig. 3 on C. In Fig. 4 TR gener-
ally proceeds from bottom to top. At the bottom in the rectangle shaded in light red are the
clauses in C. The leftmost clause in the top row is the empty clause 2, indicating unsat-
isfiability. Clauses are connected with directed edges from premises to conclusions. Edges
are labeled with production rules, where “BFS-loop” is abbreviated to “loop”, “init” to “i”,
and “conclusion” to “conc”. Please ignore the different colors and styles of the clauses and
edges for now. These will be explained when discussing extraction of a UC later in Sec. 4.1.

Saturation in line 2 of the algorithm in Fig. 3 produces no new clauses.8 The two clauses
in row 2 are generated by augmentation (line 3). The following saturation (line 4) produces
no new clauses. The dark green shaded rectangle is the loop partition for the first loop search
iteration. Row 3 contains the clauses obtained by initialization of the BFS loop search iter-
ation (line 11). Row 4 then contains the clauses generated from those in row 3 by satura-
tion restricted to step-xx (line 12). The subsumption test fails in this iteration, as ¬x1 (from
G(¬x1)) does not subsume 2 (from G(Xx4)) (lines 13–15). The light green shaded rectangle
is the loop partition for the second loop search iteration. Row 5 contains the clauses obtained
by initialization and row 6 those obtained from them by restricted saturation. This time the
subsumption test succeeds, and the loop search conclusions are shown in row 7 (line 18).
Finally, while row 8 contains a “blind alley”, row 9 has the derivation of the empty clause 2
via saturation (line 19).

4 UC Extraction

In this section we present our method to extract a UC from an execution of the algorithm in
Fig. 3. We first show how to extract a UC in SNF (Sec. 4.1). Then we map that UC back to
LTL (Sec. 4.2).

4.1 Extracting a UC in SNF

In this subsection we describe, given an unsatisfiable set of SNF clauses C, how to obtain
a subset of C, Cuc, that is by itself unsatisfiable. During the execution of the algorithm in
Fig. 3 a resolution graph is built that records which clauses were used to generate other
clauses. Then the resolution graph is traversed backwards from the empty clause to find

8 While it may seem that some clauses are not considered for saturation, this is due to either sub-
sumption of one clause by another (e.g., G(¬wx4 ∨X¬x1 ∨Xx4) obtained from G(¬wx4 ∨Xx4 ∨Xwx4) and
G(¬x1 ∨¬wx4) is subsumed by G(¬wx4 ∨X¬x1)) or the fact that TRP++ uses ordered resolution (e.g., x1
with G(¬x1 ∨ x2) — the order here is x1 < x2 < p < q < x3 < x4; [53, 5]). Both are issues of completeness
of TR and, therefore, not discussed in this article.
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the subset of C that was actually used to prove unsatisfiability (Sec. 4.1.1). The specifics of
the TR algorithm are then used to construct an optimized version of the resolution graph
(Sec. 4.1.2).

While we are not aware of corresponding previous work in the domain of temporal logic,
the general idea of the construction is unsurprising. In fact, applying a resolution method to a
set of input clauses in a clausal normal form, constructing a resolution graph, and determin-
ing an unsatisfiable subset of the set of input clauses by backward traversal of the resolution
graph from the empty clause is well known in SAT (e.g., [99]). The complexity analysis and
the optimization of the resolution graph are original and specific to the algorithm in Fig. 3.

Note that in the preliminary version of this paper [85] we presented the optimized ver-
sion of the resolution graph right away.

4.1.1 Extracting a UC in SNF from a Resolution Graph

Resolution Graph — Construction and Added Complexity In Def. 2–4 we state the construc-
tion of a resolution graph during an execution of the algorithm in Fig. 3. Then we discuss
the complexity that the construction of a resolution graph adds to an execution of the algo-
rithm in Fig. 3 (Rem. 3 and 4). Finally, in Lemma 1 we establish a bound on the size of a
resolution graph.

The definition of a resolution graph is split into three parts. Definition 2 gives the “type”
of a resolution graph. Definition 3 describes the initialization of a resolution graph at the be-
ginning of an execution of the algorithm in Fig. 3. Finally, Def. 4 describes how a resolution
graph is updated during an execution of the algorithm in Fig. 3. Splitting the definition of a
resolution graph allows to limit the scope of the changes that are required for the definition
of an optimized resolution graph in Sec. 4.1.2 to how a resolution graph is updated.

Definition 2 (Resolution Graph: Type) Let C be a set of SNF clauses, and assume an
execution of the algorithm in Fig. 3 on C. A resolution graph G is a directed graph consisting
of (i) a set of vertices V , (ii) a set of directed edges E ⊆ V ×V , (iii) a labeling of vertices
with SNF clauses LV : V → C, and (iv) a partitioning PV of the set of vertices V into one
main partition MV and one partition LV

i for each BFS loop search iteration in the execution
of the algorithm in Fig. 3 on the set of SNF clauses C: PV : V = MV ]LV

0 ] . . .]LV
n .

Definition 3 (Resolution Graph: Initialization) Let C be a set of SNF clauses, and assume
an execution of the algorithm in Fig. 3 on C. The resolution graph G is initialized in line
1 of the algorithm in Fig. 3 as follows: (i) V contains one vertex v per clause c in C:
V = {vc | c ∈C}, (ii) E is empty: E = /0, (iii) each vertex is labeled with the corresponding
clause: LV : V →C,LV (vc) = c, and (iv) the partitioning PV contains only the main partition
MV , which contains all vertices: PV : MV =V .

Definition 4 (Resolution Graph: Update) Let C be a set of SNF clauses, and assume an
execution of the algorithm in Fig. 3 on C. The resolution graph G is updated as follows.
Whenever a new BFS loop search iteration is entered (line 11), a new partition LV

i is created
and added to PV . For each application of a production rule from Tab. 2 that either generates
a new clause in partition MV or LV

i or is the first application of rule BFS-loop-it-sub to clause c′′

in C′′ in line 15: (i) if the applied production rule is not rule BFS-loop-it-sub , then a new vertex
v is created for the conclusion c (which is a new clause), labeled with c, and put into partition
MV or LV

i ; (ii) an edge is created from the vertex labeled with premise 1 (resp. premise 2) in
partition MV , LV

i , or LV
i−1 to the vertex labeled with the conclusion in partition MV or LV

i .
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Remark 2 (Determinants of Resolution Graph) Note that a resolution graph constructed
according to Def. 2–4 is determined not only by the set of input clauses C but also by the
execution of the algorithm in Fig. 3 on C. For example, consider C ≡ {(p),(¬p),(q),(¬q)}.
Depending on the order in which clauses are considered by the algorithm in Fig. 3 the empty
clause 2 will be derived either from (p) and (¬p) or from (q) and (¬q). As saturation halts
as soon as 2 has been derived, two different resolution graphs for C will be obtained. Hence,
strictly speaking, a resolution graph is parameterized by a set of SNF clauses C and by an
execution of the algorithm in Fig. 3 on C. In this article both parameters are usually provided
by the context. Therefore, in the remainder of this article when we say “resolution graph”,
then we refer to the object that is obtained from Def. 2–4 after an execution of the algorithm
in Fig. 3 on a set of clauses C.

Remember that BFS loop search requires that clauses in different BFS loop search iter-
ations are kept apart from each other. Hence, in any partition there can be at most one vertex
labeled with a given clause, but there may well exist two or more vertices in different parti-
tions labeled with the same clause. In fact, an application of production rule BFS-loop-it-init-x

will lead to such a situation as it copies a clause from the main partition to the partition of
the current BFS loop search iteration.

In Rem. 3 and 4 we establish the complexity of the construction of a resolution graph in
terms of its own size. In Lemma 1 we then obtain a limit on the size of the resolution graph
by bounding the number of (i) different clauses in each partition, (ii) iterations in each loop
search by the length of the longest monotonically increasing sequence of Boolean formulas
over AP, and (iii) loop searches by the number of different loop search conclusions.

Remark 3 (Vertex in Resolution Graph has At Most Three Incoming Edges) Let G be a
resolution graph. Inspection of Tab. 2 shows that each vertex in the resolution graph G has
at most three incoming edges. Let vc be a vertex in G labeled with clause c. If the clause
c was generated by an application of any production rule except for BFS-loop-it-init-c , then
the vertex vc only has incoming edges originating at the premises of c, and each production
rule in Tab. 2 has at most two premises. Otherwise, if the clause c was generated by an
application of production rule BFS-loop-it-init-c , then the vertex vc has at most two incoming
edges originating at the premises of c and at most one incoming edge from an application of
rule BFS-loop-it-sub .

Remark 4 (Added Complexity of Construction of Resolution Graph) Let G be a resolution
graph with set of vertices V and set of edges E. Assume that the data structure used to
represent clauses has an entry for a pointer to the vertex of G that it labels, and similarly
the data structure used to represent vertices has an entry for a pointer to the clause that it
is labeled with. Moreover, the data structure used to represent vertices has three slots with
pointers to its incoming edges (remember that by Rem. 3 each vertex in G has at most three
incoming edges) and a Boolean flag to mark vertices in the main partition that are labeled
with an initial clause. It is now easy to see that initializing the resolution graph with respect
to the set of SNF clauses C and updating the resolution graph G whenever a new clause is
generated during the execution of the algorithm in Fig. 3 can be performed using constant
time for each clause. In other words, the construction of the resolution graph takes time
O(|V |+ |E|) overall in addition to the time required to run the algorithm in Fig. 3.

Lemma 1 (Size of Resolution Graph) Let C be a set of SNF clauses, and let G be a resolu-
tion graph with set of vertices V and set of edges E. Then |V | and |E| are at most exponential
in |AP|+ log(|C|).
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Proof The following reasoning shows that |V | is at most exponential in |AP|+ log(|C|):
1. In an initial clause a proposition can be not present, present non-negated, or present

negated. Hence, the number of different initial clauses is O(3|AP|).
2. In a global clause a proposition can be one of not present, present non-negated, or present

negated; and prefixed by X not present, present non-negated, or present negated. Hence,
the number of different global clauses is O(9|AP|).

3. The number of clauses in the main partition is bounded by |C|+O(3|AP|)+O(9|AP|) =
O(|C|+9|AP|).

4. The number of clauses in a partition for a BFS loop search iteration is bounded by
O(9|AP|).

5. The number of partitions is bounded by 1 plus the number of BFS loop search iterations.
6. The number of iterations in a BFS loop search is bounded by the length of the longest

monotonically increasing sequence of Boolean formulas over AP, which is O(2|AP|). (In
[33] that result is obtained by reasoning on a behavior graph.)

7. The number of BFS loop searches is bounded by the number of different clauses that
can be the result of a BFS loop search. The number of different clauses that can be
the consequence of BFS loop search conclusion 1 BFS-loop-conclusion1 is bounded by the
number of different global clauses with empty next part, which is O(3|AP|). The num-
ber of different clauses that can be the consequence of BFS loop search conclusion 2
BFS-loop-conclusion2 is bounded by the number of different eventuality literals times the

number of different global clauses with empty next part, which is O(|C| ·3|AP|). Hence,
the number of BFS loop searches is bounded by O(|C| ·3|AP|).

8. Taking all of the above into account, the number of clauses is bounded by
O(|C|+9|AP|+ |C| ·3|AP| ·2|AP| ·9|AP|) = O(|C| ·54|AP|).

To see the result for |E| notice that by Rem. 3 each vertex in G has at most three incoming
edges. This concludes the proof. ut

UC in SNF — Construction, Correctness, and Added Complexity We are now ready to de-
scribe the extraction of a UC in SNF from a resolution graph in Def. 6. Theorem 1, which
establishes correctness of the construction, is then straightforward to obtain.

Definition 5 (UC in SNF) Let C be an unsatisfiable set of SNF clauses. Let Cuc be an
unsatisfiable subset of C. Then Cuc is a UC of C in SNF.

Definition 6 (UC in SNF via TR) Let C be an unsatisfiable set of SNF clauses, let G be a
resolution graph, and let v2 be the (unique) vertex in the main partition MV of the resolution
graph G labeled with the empty clause 2. Let G′ be the smallest subgraph of G that contains
v2 and all vertices in G (and the corresponding edges) that are backward reachable from
v2. The UC of C in SNF via TR, Cuc, is the subset of C such that there exists a vertex
v in the subgraph G′, labeled with c ∈ C, and contained in the main partition MV of G:
Cuc = {c ∈C | ∃v ∈VG′ . LV (v) = c∧ v ∈MV}.

Theorem 1 (Unsatisfiability of UC in SNF via TR) Let C be an unsatisfiable set of SNF
clauses, and let Cuc be a UC of C in SNF via TR. Then Cuc is unsatisfiable.

Proof Notice that in the resolution graph each conclusion is connected by an edge to all of
its premises. Therefore, the UC in SNF according to Def. 6 contains all clauses of the set of
starting clauses C that contributed to deriving the empty clause and, hence, to establishing
unsatisfiability of C. It now follows directly from the correctness of TR that Cuc is unsatis-
fiable. This concludes the proof. ut
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As Cuc is a subset of C, we have the following corollary.

Corollary 1 (UC in SNF via TR is UC in SNF) Let C be an unsatisfiable set of SNF
clauses, and let Cuc be a UC of C in SNF via TR. Then Cuc is a UC of C in SNF.

Remark 5 (Determinants of UC in SNF via TR) Note that an unsatisfiable set of SNF clauses
C may have several UCs in SNF. Moreover, not all of them might be obtained using Def. 6.
For example, for C≡{(p),(¬p),(G q),(F ¬q)} the algorithm in Fig. 3 will derive the empty
clause 2 from (p) and (¬p) during the first round of saturation, leading to {(p),(¬p)} as
a UC of C in SNF via TR. The alternative UC of C in SNF, {(G q),(F ¬q)}, requires loop
search, which is only performed later in the algorithm in Fig. 3 and, therefore, will not be
produced by Def. 6. Finally, as Def. 6 relies on a resolution graph, the determinants of a
resolution graph in Rem. 2 also become determinants of a UC in SNF via TR.

Next we discuss the complexity that our method for UC extraction adds to an execution
of the algorithm in Fig. 3. Using Rem. 4 and Lemma 1 the desired result is easily obtained in
Prop. 1. It turns out that the effort that is induced by our method for UC extraction in addition
to the effort required by an execution of the algorithm in Fig. 3 is linearly bounded by the
effort required by the algorithm in Fig. 3: For all vertices present in the resolution graph a
corresponding clause must have been previously generated by the algorithm in Fig. 3, and
each vertex in the resolution graph requires constant time for construction and traversal.

Proposition 1 (Added Complexity of UC Extraction) Let C be an unsatisfiable set of SNF
clauses. Construction of Cuc according to Def. 6 can be performed in time exponential in
|AP|+ log(|C|) in addition to the time required to run the algorithm in Fig. 3.

Proof Let G be the resolution graph with set of vertices V and set of edges E. Assume data
structures for clauses and vertices in G are as in Rem. 4. By Rem. 4 construction of G takes
time O(|V |+ |E|) overall. Once the empty clause 2 has been derived in the main partition,
backward traversal of G from the unique vertex in the main partition labeled with the empty
clause, v2, can be performed (e.g., using breadth first search) in time O(|V |+ |E|). When-
ever a vertex labeled with an initial clause c is encountered during the backward traversal of
G, then c is signaled to be part of Cuc, requiring time O(|C|) overall. Using Lemma 1 the
result follows. This concludes the proof. ut

Remark 6 (Pruning the Resolution Graph at Run Time) The specifics of TR in the algorithm
in Fig. 3 allow to optimize extraction of UCs by pruning the resolution graph during the
execution of the algorithm in Fig. 3 extended with the construction in Def. 6 as follows.
Notice that after the completion of a (successful or unsuccessful) loop search for some
eventuality clause c in lines 9–19 of the algorithm in Fig. 3 no new edges between the
main partition and one of the partitions used during the just completed loop search for c will
be created. Hence, after completion of an execution of lines 9–19 of the algorithm in Fig. 3
vertices in the partitions used during the just completed loop search that are not backward
reachable from the main partition can be pruned from the resolution graph.

Example We now continue the running example from Sec. 3.4.2. We show how to extract
a UC of φ (see (10)) in SNF via TR from the execution of the algorithm in Fig. 3 on C
(see (12)) in Fig. 4, which contains the resolution graph according to Def. 2–4. Vertices
are given by the clauses they are labeled with and by the partition in which they appear.
We now apply Def. 6. The dashed, blue clauses and edges show the part of the resolution
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graph that is backward reachable from 2. Clause G(¬x2∨q) is the only clause of C that is
not backward reachable from 2. Hence, the UC of φ in SNF via TR according to Def. 6 is
Cuc =C \{G(¬x2∨q)} as shown in (13).

Cuc ≡

{x1,
G(¬x1∨Xx1),
G(¬x1∨ x2),
G(¬x2∨ p),
x3,
G(¬x3∨Fx4),
G(¬p∨¬x4)}.

(13)

4.1.2 Extracting a UC in SNF from an Optimized Resolution Graph

In Def. 7 we optimize the construction of a resolution graph by not including edges between
some premises and conclusions. Definition 8 correspondingly adapts the extraction of a UC.
The proof of correctness of the optimized construction is then significantly more complex
than for the unoptimized variant. Theorem 2 is the main theorem and Lemmas 2–5 contain
the details. Proposition 2 complements the definition and proof of correctness of the op-
timized construction by showing for the remaining edges that they are indeed required to
obtain a UC.

The “type” and initialization of an optimized resolution graph are as for a resolution
graph (Def. 2, 3); only the update changes (Def. 7). In the remainder of this article when we
say “optimized resolution graph”, then we refer to the object that is obtained from Def. 2, 3,
and 7 after an execution of the algorithm in Fig. 3 on a set of clauses C.

Definition 7 (Optimized Resolution Graph: Update) An optimized resolution graph is
updated in the same way as a resolution graph, except that contrary to Def. 4 no edge
is added between a pair of vertices labeled with a premise and a conclusion in the fol-
lowing four cases: (i) between vertices labeled with premise 1 and the conclusion of rule
aug2 , (ii) between vertices labeled with premise 1 and the conclusion of rule BFS-loop-it-init-c ,

(iii) between vertices labeled with premise 2 and the conclusion of rule BFS-loop-it-init-c , and
(iv) between vertices labeled with premise 2 and the conclusion of rule BFS-loop-conclusion2 .

Definition 8 (UC in SNF via TR from an Optimized Resolution Graph) Let C be an
unsatisfiable set of SNF clauses. The UC of C in SNF via TR from an optimized resolution
graph is obtained in the same way as the UC of C in SNF via TR, except that an optimized
resolution graph is used.

Theorem 2 (Unsatisfiability of UC in SNF via TR from an Optimized Resolution
Graph) Let C be an unsatisfiable set of SNF clauses, and let Cuc be a UC of C in SNF
via TR from an optimized resolution graph. Then Cuc is unsatisfiable.

Proof Assume for a moment that in Def. 7 no edges are excluded in the update of the opti-
mized resolution graph. In that case unsatisfiability of Cuc has been established in Thm. 1.
In the remainder of the proof we show that for constructing a UC of C in SNF via TR the
optimized resolution graph can be used in place of the resolution graph, i.e., that none of the
four exclusions of edges in Def. 7 render the resulting UC of C in SNF satisfiable.

We have to show that (i) not including an edge from the vertex labeled with premise 1
to the vertex labeled with the conclusion for an application of rule aug2 , (ii) not including
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an edge from the vertex labeled with premise 2 to the vertex labeled with the conclusion
for an application of rule BFS-loop-conclusion2 , (iii) not including an edge from the vertex
labeled with premise 2 to the vertex labeled with the conclusion for an application of rule
BFS-loop-it-init-c , and (iv) not including an edge from the vertex labeled with premise 1 to the

vertex labeled with the conclusion for an application of rule BFS-loop-it-init-c in the resolution
graph G maintains the fact that the resulting Cuc is unsatisfiable.

To see the intuition behind (i) note that for a vertex vc labeled with the conclusion c
of an application of rule aug2 in the main partition MV to be backward reachable from the
(unique) vertex in the main partition MV of the resolution graph G labeled with the empty
clause 2, v2, the occurrence of ¬wl in c must be “resolved away” at some point on the path
from vc to v2. It turns out that this can only happen by resolution with a clause that is derived
from the conclusion of rule aug1 applied to an eventuality clause c′ with eventuality literal l.
By the construction of the resolution graph G vc′ must be backward reachable from v2 and,
therefore, c′ must be included in the UC in SNF. Hence, an execution of the algorithm in
Fig. 3 with input Cuc will produce c from c′. For a formal proof see Lemma 2.

A similar reasoning as for (i) applies to (ii), formalized in Lemma 3.
For (iii) notice that a vertex labeled with the conclusion of an application of rule

BFS-loop-it-init-c can only be backward reachable from v2 if the corresponding BFS loop
search iteration is successful and a vertex labeled with one of the resulting conclusions of
rules BFS-loop-conclusion1 or BFS-loop-conclusion2 is backward reachable from v2. The latter fact
implies that an eventuality clause with the same eventuality literal as in premise 2 of rule
BFS-loop-it-init-c is present in the UC in SNF. Hence, an execution of the algorithm in Fig. 3

with input Cuc will produce premise 2 of BFS-loop-it-init-c as required. This is formally proven
in Lemma 4.

Finally, (iv) corresponds to considering only the last iteration of a successful loop search
to obtain the UC Cuc. (iv) is obtained by understanding that in a BFS loop search iteration
the premises 1 of rule BFS-loop-it-init-c essentially constitute a hypothetical fixed point; if the
BFS loop search iteration is successful, then the hypothetical fixed point is proven to be
an actual fixed point. For the correctness of a proof of the unsatisfiability of C it is only
relevant that this hypothetical fixed point is shown to be an actual fixed point but not how
the hypothesis is obtained. This is formalized in Lemma 5. This concludes the proof. ut

Lemma 2 Let C be an unsatisfiable set of SNF clauses, let G be an optimized resolution
graph, and let G′ be the subgraph according to Def. 8. Let v0 be a vertex in G′ labeled with
a clause c0 = (G((¬wl)∨X(l∨wl))) created by augmentation aug2 from some eventuality
clause (G(p1∨ . . .∨pn∨Fl)) ∈ C with eventuality literal l. Then there is a vertex v1 in G′

labeled with an eventuality clause c1 = (G(q1∨ . . .∨qn′ ∨Fl)) ∈C with eventuality literal
l.

Proof There exists a path π of non-zero length in G′ from v0 to the unique vertex v2 in the
main partition M labeled with the empty clause 2. On the path π there exist two vertices
v2,v3 such that v2 is labeled with a clause c2 that contains ¬wl or X¬wl, while v3 and all of
its successors on π are labeled with clauses that contain neither ¬wl nor X¬wl. Let c3 be the
clause labeling v3.

– Case 1. c3 is generated by initial or step resolution init-ii , init-in , step-nn , step-nx , or
step-xx from c2 and some other clause c4. c4 must contain wl or Xwl. Moreover, there

must be a path π ′ (possibly of zero length) that starts from a vertex v5 labeled with a
clause c5 and that ends in the vertex v4 labeled with c4, such that each vertex on the path
π ′ is labeled with a clause that contains wl or Xwl. Finally, wl or Xwl must be present in
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c5 either because c5 is contained in the set of input clauses in SNF, C, or because c5 is
generated by some production rule that introduces wl or Xwl in the conclusion.

– Case 1.1. c5 is contained in the set of input clauses in SNF, C. Impossible: wl is a
fresh proposition in aug1 and aug2 .

– Case 1.2. c5 is generated by initial or step resolution init-ii , init-in , step-nn , step-nx ,
or step-xx . Impossible: initial and step resolution do not generate literals that are not
contained (modulo time-shifting) in at least one of the premises.

– Case 1.3. c5 is generated by augmentation 1 aug1 . By the construction of the res-
olution graph G and the subgraph G′ there is an edge in G′ from a vertex v1 in G′

labeled with an eventuality clause c1 = (G(q1∨ . . .∨qn′ ∨Fl)) ∈C with eventuality
literal l to v5.

– Case 1.4. c5 is generated by augmentation 2 aug2 , i.e., c5 = c0. This introduces
another occurrence of ¬wl to be “resolved away”. Note that in the main partition
only new clauses are generated from existing ones with edges leading from exist-
ing vertices labeled with existing clauses to new vertices labeled with new clauses.
Therefore, the main partition of G′ is a finite directed acyclic graph, and this case
cannot happen infinitely often.

– Case 1.5. c5 is generated by BFS loop search initialization BFS-loop-it-init-x . Impos-
sible: the production rule BFS-loop-it-init-x copies a clause verbatim. I.e., it cannot be
the case that c5 contains wl or Xwl, while the premise does not.

– Case 1.6. c5 is generated by BFS loop search initialization BFS-loop-it-init-n . Impossi-
ble: the production rule BFS-loop-it-init-n copies and time-shifts a clause. I.e., it cannot
be the case that c5 contains Xwl, while the premise does not contain wl.

– Case 1.7. c5 is generated by BFS loop search initialization BFS-loop-it-init-c . Impossi-
ble: the production rule BFS-loop-it-init-c copies and time-shifts a clause from a previ-
ous BFS loop search iteration (or initializes with the empty clause 2) and disjoins
with an eventuality literal Xl′. I.e., it cannot be the case that c5 contains Xwl, while
the premise does not contain wl.

– Case 1.8. v5 is linked to via BFS loop search subsumption BFS-loop-it-sub . This case
can be ignored as BFS loop search subsumption BFS-loop-it-sub does not actually
generate a clause but merely links existing ones.

– Case 1.9. c5 is generated by BFS loop search conclusion 1 BFS-loop-conclusion1 . Im-
possible: production rule BFS-loop-conclusion1 copies all literals verbatim from a clause
derived in loop search, copies all literals verbatim from an eventuality clause except
for the eventuality literal l′ prefixed by F, and disjoins with the eventuality literal l′.
I.e., it cannot be the case that c5 contains wl, while the premises do not.

– Case 1.10. c5 is generated by BFS loop search conclusion 2 BFS-loop-conclusion2 . Im-
possible: production rule BFS-loop-conclusion2 copies and time-shifts all literals from a
clause c6 derived in loop search and disjoins with ¬wl′ and Xl′ for some eventuality
literal l′. I.e., it cannot be the case that c5 contains Xwl, while the premise c6 does
not contain wl.

– Case 2. c3 is generated by augmentation aug1 or aug2 . Impossible: the premise of the
production rules aug1 and aug2 cannot contain either ¬wl or X¬wl, as wl is assumed to
be a fresh proposition in aug1 and aug2 .

– Case 3. c3 is generated by BFS loop search initialization BFS-loop-it-init-x . Impossible: the
production rule BFS-loop-it-init-x copies a clause verbatim. I.e., it cannot be the case that
c2 contains ¬wl or X¬wl, while c3 does not.
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– Case 4. c3 is generated by BFS loop search initialization BFS-loop-it-init-n . Impossible: the
production rule BFS-loop-it-init-n copies and time-shifts a clause. I.e., it cannot be the case
that c2 contains ¬wl, while c3 does not contain X¬wl.

– Case 5. c3 is generated by BFS loop search initialization BFS-loop-it-init-c . Impossible: the
production rule BFS-loop-it-init-c copies and time-shifts a clause from a previous BFS loop
search iteration (or initializes with the empty clause 2) and disjoins with an eventuality
literal Xl′. I.e., it cannot be the case that c2 contains ¬wl, while c3 does not contain
X¬wl.

– Case 6. v2 and v3 are linked via BFS loop search subsumption BFS-loop-it-sub , i.e., a
time-shifted version of c2 subsumes c3. Impossible: BFS-loop-it-sub links from a clause
with fewer literals to a clause with (modulo time-shifting) the same and more literals.
I.e., it cannot be the case that c2 contains ¬wl, while c3 does not contain X¬wl.

– Case 7. c3 is generated by BFS loop search conclusion 1 BFS-loop-conclusion1 . Impossible:
production rule BFS-loop-conclusion1 copies all literals verbatim from a clause derived in
loop search, copies all literals verbatim from an eventuality clause except for the even-
tuality literal l′ prefixed by F, and disjoins with the eventuality literal l′. I.e., it cannot
be the case that c2 contains ¬wl, while c3 does not.

– Case 8. c3 is generated by BFS loop search conclusion 2 BFS-loop-conclusion2 . Impossi-
ble: production rule BFS-loop-conclusion2 copies and time-shifts all literals from a clause
derived in loop search and disjoins with ¬wl′ and Xl′ for some eventuality literal l′. I.e.,
it cannot be the case that c2 contains ¬wl, while c3 does not contain X¬wl.

Notice that the only possible cases are case 1.3 and 1.4. Of those, case 1.4 can only happen
a finite number of times and must be followed by an occurrence of case 1.3. This concludes
the proof. ut

Lemma 3 Let C be an unsatisfiable set of SNF clauses, let G be an optimized resolution
graph, and let G′ be the subgraph according to Def. 8. Let v be a vertex in G′ labeled with
a clause c = (G((¬wl)∨X(q1∨ . . .∨qn′ ∨ l))) generated by BFS loop search conclusion 2
BFS-loop-conclusion2 from some eventuality clause (G(p1∨ . . .∨pn∨Fl)) ∈C with eventuality

literal l (and some other clause). Then there is a vertex v′′ in G′ labeled with an eventuality
clause c′′ = (G(r1∨ . . .∨ rn′′ ∨Fl)) ∈C with eventuality literal l.

Proof Analogous to the proof of Lemma 2. ut

Lemma 4 Let C be an unsatisfiable set of SNF clauses, let G be an optimized resolution
graph, and let G′ be the subgraph according to Def. 8. Let v be a vertex in G′ labeled
with a clause c = (GX(q1∨ . . .∨qn′ ∨ l)) generated by production rule BFS-loop-it-init-c from
some eventuality clause (G(p1∨ . . .∨pn∨Fl)) ∈ C with eventuality literal l (and some
other clause). Then there is a vertex v′′ in G′ labeled with an eventuality clause c′′ =
(G(r1∨ . . .∨ rn′′ ∨Fl)) ∈C with eventuality literal l.

Proof By the construction of the optimized resolution graph G (Def. 2, 3, 7) and its subgraph
G′ (Def. 8) v is included in G′ only if G′ also includes some vertex v′ labeled with some
clause c′ such that c′ was generated by BFS loop search conclusion BFS-loop-conclusion1 or
BFS-loop-conclusion2 from the BFS loop search iteration of which c is part.

– Case 1. c′ is generated by BFS loop search conclusion 1 BFS-loop-conclusion1 . The claim
follows from the construction of the optimized resolution graph G and its subgraph G′.
By Def. 7 v′ has an incoming edge from a vertex v′′ labeled with an eventuality clause
c′′ = (G(r1∨ . . .∨ rn′′ ∨Fl)) ∈C with eventuality literal l and by Def. 8 v′′ is included in
G′ if v′ is included.
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– Case 2. c′ is generated by BFS loop search conclusion 2 BFS-loop-conclusion2 . In that case
the claim follows directly from Lemma 3.

This concludes the proof. ut

Lemma 5 Let C be a set of SNF clauses, assume an execution of the algorithm in Fig. 3 on
C, and let C′ ≡ {(G(qi′,1∨ . . .∨qi′,n′ i′

)) | 1≤ i′ ≤ n′} and C′′ ≡ {(GX(pi,1∨ . . .∨pi,ni ∨ l)) |
1 ≤ i ≤ n} be the sets of clauses obtained in line 13 and line 14 of the algorithm in Fig. 3
in the last iteration of a successful loop search for eventuality literal l. Then, assuming C,
{(G(qi′,1∨ . . .∨qi′,n′1 ∨XG¬l)) | 1≤ i′ ≤ n′} is provable.

Proof After initialization of a BFS loop search iteration in line 11 of the algorithm in Fig. 3
there are three sets of clauses according to the three production rules for initializing a BFS
loop search iteration. Clauses generated by BFS-loop-it-init-x and BFS-loop-it-init-n are (partly
time-shifted) duplicates of clauses derived so far in the main partition. BFS-loop-it-init-c gen-
erates the set of clauses C′′. From these three sets saturation restricted to rule step-xx in line
12 derives another set of clauses, C′. Taking the restriction of saturation to rule step-xx into
account, that BFS loop search iteration has established that, assuming C, the following fact
is provable:

G((
∧

1≤i≤n

X(pi,1∨ . . .∨pi,ni ∨ l))→
∧

1≤i′≤n′
(qi′,1∨ . . .∨qi′,n′ i′

)). (14)

Moreover, because for a successful BFS loop search iteration subsumption in line 15 suc-
ceeds, the following fact is also provable:∧

1≤i≤n

∨
1≤i′≤n′

G((qi′,1∨ . . .∨qi′,n′ i′
)→ (pi,1∨ . . .∨pi,ni)). (15)

We rewrite (14) and (15) as follows:

G((
∧

1≤i≤n

X(pi,1∨ . . .∨pi,ni ∨ l))→
∧

1≤i′≤n′
(qi′,1∨ . . .∨qi′,n′ i′

))

⇔ G
∧

1≤i′≤n′
((

∧
1≤i≤n

X(pi,1∨ . . .∨pi,ni ∨ l))→ (qi′,1∨ . . .∨qi′,n′ i′
))

⇔
∧

1≤i′≤n′
G((

∧
1≤i≤n

X(pi,1∨ . . .∨pi,ni ∨ l))→ (qi′,1∨ . . .∨qi′,n′ i′
))

⇔
∧

1≤i′≤n′
G((¬(qi′,1∨ . . .∨qi′,n′ i′

))→¬
∧

1≤i≤n

X(pi,1∨ . . .∨pi,ni ∨ l))

⇔
∧

1≤i′≤n′
G((¬(qi′,1∨ . . .∨qi′,n′ i′

))→
∨

1≤i≤n

X¬(pi,1∨ . . .∨pi,ni ∨ l))

⇔
∧

1≤i′≤n′
G((¬(qi′,1∨ . . .∨qi′,n′ i′

))→
∨

1≤i≤n

X((¬(pi,1∨ . . .∨pi,ni))∧¬l))

⇔
∧

1≤i′≤n′
G((¬(qi′,1∨ . . .∨qi′,n′ i′

))→ ((X¬l)∧
∨

1≤i≤n

X¬(pi,1∨ . . .∨pi,ni))), (16)

∧
1≤i≤n

∨
1≤i′≤n′

G((qi′,1∨ . . .∨qi′,n′ i′
)→ (pi,1∨ . . .∨pi,ni))

⇔
∧

1≤i≤n

∨
1≤i′≤n′

G((¬(pi,1∨ . . .∨pi,ni))→¬(qi′,1∨ . . .∨qi′,n′ i′
)). (17)
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Putting (16) and (17) together, we obtain (18), which is exactly the premise required to
perform eventuality resolution with an eventuality clause with eventuality literal l [39]:∧

1≤i′≤n′
G(qi′,1∨ . . .∨qi′,n′ i′

∨XG¬l). (18)

This concludes the proof. ut

Corollary 2 (UC in SNF via TR from an Optimized Resolution Graph is UC in SNF)
Let C be an unsatisfiable set of SNF clauses, and let Cuc be a UC of C in SNF via TR from
an optimized resolution graph. Then Cuc is a UC of C in SNF.

Theorem 2 shows that not including some premises during the update of the optimized
resolution graph still leads to a UC. It does not discuss whether the remaining premises
actually need to be included to guarantee a UC. For all premises of all production rules not
excluded in the update of the optimized resolution graph in Def. 7 it turns out that they are
indeed required to obtain a UC. In other words, for any of the premises not excluded in the
update of the optimized resolution graph in Def. 7 there exists a set of SNF clauses C such
that excluding that particular premise from the update of the optimized resolution graph for
C in Def. 7 and from the subsequent extraction of a UC in SNF in Def. 8 leads to a satisfiable
rather than unsatisfiable set of clauses Cuc ⊆C.

Proposition 2 (Minimality of Set of Premises to Include in Optimized Resolution
Graph) The set of premises included in the update of the optimized resolution graph in
Def. 7 is minimal.

Proof The proof is obtained by providing suitable examples. For a given premise p of some
production rule rule with conclusion c the need for inclusion of edges between instances of
p and c induced by rule in the optimized resolution graph to obtain a UC can be established
as follows.9 Let C be an unsatisfiable set of SNF clauses, let G be an optimized resolution
graph, let v2 be the (unique) vertex in the main partition MV of the optimized resolution
graph G labeled with the empty clause 2, and let Cuc be the UC of C in SNF via TR from an
optimized resolution graph. Assume that Cuc is a minimal UC, i.e., for any c′ ∈Cuc we have
that Cuc\{c′} is satisfiable. Now, if removing all edges between instances of p and c induced
by rule from G makes a vertex vc′ in MV labeled with c′ ∈Cuc backward unreachable from
v2, then the UC obtained without including edges between instances of p and c induced by
rule clearly would not be unsatisfiable.

Hence, for all premises of all production rules not excluded in the update of the opti-
mized resolution graph in Def. 7 we need to provide triples of premises p of production
rules rule , minimally unsatisfiable SNFs C ≡ Cuc, and subgraphs G′ of optimized resolu-
tion graphs with the following properties. (i) G′ is the subgraph according to Def. 8 for C.
(ii) There exists a vertex vc′ in G′ labeled with c′ ∈ C and an edge e that is an instance of
p and c induced by rule such that removal of e from G′ makes vc′ backward unreachable
from v2. In the graphs below e and vc′ are marked dashed, blue. The vertex labels use TRP++
syntax.

9 Note that this proof assumes that there are no edges between instances of the premise of aug2 , the

premises of BFS-loop-it-init-c , and premise 2 of BFS-loop-conclusion2 and their conclusions induced by these
production rules as indicated in Def. 7. I.e., different minimal sets of premises to include in an optimized
resolution graph may exist.
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Note that the search for such triples can be supported by a corresponding modification
to the temporal resolution solver. For the more complex cases candidates were obtained in
that way and then optimized by hand.

Below we provide triples for init-ii and BFS-loop-it-init-x . The triples for init-in , step-nn ,
step-nx , step-xx are trivially obtained as the one for init-ii . The triple for BFS-loop-it-init-x also

serves as triple for premises 1 and 2 of BFS-loop-conclusion1 . The remaining triples are more
complex. They can be found in App. A of [86].

init-ii {(a),(¬a)}

or([not a])or([a])

or([])

init-iiinit-ii

BFS-loop-it-init-x

{(a),
(G((¬a)∨Xa)),
(GF(¬a))}

or([])

always(or([not a]))

always(or([not a,next(a)]))

or([a])

always(or([sometime(not a)]))

always(or([not a,next(a)]))

always(or([next(not a)]))

always(or([not a]))

step-xx

step-xx

init-ini

BFS-loop-conclusion1g

BFS-loop-it-init-x

init-inn

BFS-loop-conclusion1e BFS-loop-it-sub

This concludes the proof. ut

Notice that using optimized resolution graphs has no impact on the added complexity of
UC extraction. Hence, we state Prop. 3.

Proposition 3 (Added Complexity of UC Extraction from an Optimized Resolution
Graph) Let C be an unsatisfiable set of SNF clauses. Construction of Cuc according to Def. 8
can be performed in time exponential in |AP|+ log(|C|) in addition to the time required to
run the algorithm in Fig. 3.

http://www.schuppan.de/viktor/actainformatica15/VSchuppan-Acta-Informatica-2015-full.pdf#appendix.A
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Remark 7 (Pruning the Optimized Resolution Graph at Run Time) The fact that not all
premises need to be included during the update of the optimized resolution graph permits
the following optimization for an optimized resolution graph during the execution of the
algorithm in Fig. 3 extended with the construction in Def. 8. Note that, because in the op-
timized resolution graph there is no edge from a vertex labeled with premise 1 to a vertex
labeled with the conclusion of an application of production rule BFS-loop-it-init-c , there are no
outgoing edges from a failed loop search iteration (lines 11–15 of the algorithm in Fig. 3).
Therefore, if a loop search iteration fails, all vertices and edges in the partition of that loop
search iteration can be pruned from the optimized resolution graph right away. Moreover,
Rem. 6 also applies to optimized resolution graphs.

In the next Subsec. 4.2 and in the following Sec. 5 we only consider optimized reso-
lution graphs and UCs in SNF via TR from optimized resolution graphs, and we drop the
designators “optimized” and “from an optimized resolution graph”.

Example In Fig. 5 we return to our running example from Sec. 3.4.2 and 4.1.1 to illustrate
the construction of the optimized resolution graph and its use to extract a UC in SNF via TR.
The graph in Fig. 5 shows the same, unoptimized resolution graph as in Fig. 4. The edges that
are excluded from the optimized resolution graph according to Def. 7 are marked dotted, red.
The reader can easily verify that the dashed, blue edges and the solid, black edges in Fig. 5
are not excluded in the update of the optimized resolution graph in Def. 7, while the dotted,
red edges are in fact excluded there. As in Fig. 4 the dashed, blue clauses and edges show
the part of the resolution graph that is backward reachable from the empty clause 2. Notice
that now no clause in the loop partition for the first loop search iteration (in the rectangle
in the middle shaded in dark green), which was unsuccessful, is backward reachable from
2. Still, the subset of the starting clauses (in the rectangle at the bottom shaded in light red)
that is backward reachable from 2 is the same as when using the unoptimized resolution
graph in Fig. 4. Therefore, also the UC in SNF via TR from an optimized resolution graph
according to Def. 8 is unchanged (see (13)).

4.2 Extracting a UC in LTL

In Def. 10 we describe how to map a UC in SNF back to a UC in LTL. The correctness of
the construction is then proved in Thm. 3. The main idea in the proof is to compare the SNF
of φ and of its UC in LTL by partitioning the SNF clauses into three sets: one that is shared
by the two SNFs, one that replaces some occurrences of propositions in SNF(φ) with TRUE

or FALSE, and one whose clauses are only in SNF(φ). Then one can show that the UC of φ

in SNF must be contained in the first partition.

Definition 9 (UC in LTL) (cf. Def. 10 of [83]) Let φ be an unsatisfiable LTL formula. Let
φ uc (i) be obtained from φ by replacing a set of positive polarity occurrences of subformulas
of φ with TRUE and a set of negative polarity occurrences of subformulas of φ with FALSE

and (ii) be unsatisfiable. Then φ uc is a UC of φ in LTL.

Definition 10 (UC in LTL from SNF) Let φ be an unsatisfiable LTL formula, let SNF(φ)
be its SNF, and let Cuc be a UC of SNF(φ) in SNF. Then the UC of φ in LTL from SNF,
φ uc, is obtained as follows. For each positive (resp. negative) polarity occurrence of a proper
subformula ψ of φ with proposition xψ according to Tab. 1, replace ψ in φ with TRUE

(resp. FALSE) iff Cuc contains no clause with an occurrence of proposition xψ that is marked
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blue boxed in Tab. 1. (We are sloppy in that we “replace” subformulas of replaced subfor-
mulas, while in effect they simply vanish.)

Theorem 3 (Unsatisfiability of UC in LTL from SNF) Let φ be an unsatisfiable LTL
formula, and let φ uc be a UC of φ in LTL from SNF. Then φ uc is unsatisfiable.

Proof Let SNF(φ) be the SNF of φ , and let Cuc be a UC of SNF(φ) in SNF. Let Cuc′ be the
UC of Cuc in SNF via TR from an optimized resolution graph.

First, consider the trivial case that φ is FALSE. Here, Def. 10 results in the UC of φ in
LTL being φ uc ≡ FALSE as desired.

Now assume that φ is not FALSE, i.e., the size of the syntax tree of φ is greater than 1.
Let SNF(φ uc) be the SNF of φ uc. In order to prove that φ uc is unsatisfiable we show that the
clauses of Cuc′ (which is unsatisfiable by Def. 5 and Thm. 2) are a subset of the SNF of φ uc:
Cuc′ ⊆ SNF(φ uc).

By comparing the clauses of SNF(φ) with those of SNF(φ uc) we can partition the
clauses of SNF(φ) into three sets:10 (i) Some clauses are present in both SNF(φ) and
SNF(φ uc): C′1 ≡ SNF(φ)∩ SNF(φ uc). (ii) Some clauses are present in SNF(φ) and are
present in SNF(φ uc) with one or more occurrences of some propositions x,x′, . . . that are
marked blue boxed in Tab. 1 replaced with TRUE or FALSE. Call that set C′2. (iii) Some
clauses are present in SNF(φ) but not in SNF(φ uc): C′3 ≡ SNF(φ)\ (SNF(φ uc)∪C′2).

By Def. 5 and Cor. 2 Cuc′ is a subset of SNF(φ): Cuc′ ⊆Cuc ⊆ SNF(φ).
By Def. 10 Cuc and, therefore, also Cuc′ contains no member of C′2; otherwise, there

could not be one or more occurrences of some propositions x,x′, . . . that are marked
blue boxed in Tab. 1 replaced with TRUE or FALSE in the clauses of C′2: Cuc′ ∩C′2 = /0.

Now we argue that Cuc′ also contains no member of C′3. First, let c ∈C′3 be an initial or
a global clause. c cannot be a member of Cuc′ as, in order to be part of a proof that derives the
empty clause, all literals of c need to be “resolved away”. However, this is not possible for c
as for the literal (¬)xψ on the left side of the implication in Tab. 1 there is no clause with an
opposite literal in Cuc′ . This follows by induction on the nesting depth of the subformula ψ

to which (¬)xψ belongs from the occurrence of the superformula of ψ that has been replaced
with TRUE or FALSE in φ uc. Now let c ∈ C′3 be an eventuality clause. By Def. 8 for such
c to be part of Cuc′ there would have to be a clause c′ in the resolution graph G according
to Def. 2, 3, 7 that was generated by production rules aug1 or BFS-loop-conclusion1 and that
is backward reachable in G from the vertex labeled with the empty clause 2 in the main
partition M, v2. Again, for the latter to happen, all literals of c′ would have to be “resolved
away”, which is impossible by a similar inductive argument as before.

Hence, we have shown that all clauses in Cuc′ come from C′1, which is a subset of
SNF(φ uc). This concludes the proof. ut

As a UC in LTL from SNF fulfills requirement (i) in Def. 9, we obtain Cor. 3.

Corollary 3 (UC in LTL from SNF is UC in LTL) Let φ be an unsatisfiable LTL formula,
and let φ uc be a UC of φ in LTL from SNF. Then φ uc is a UC of φ in LTL.

Remark 8 (Determinants of UC in LTL from SNF) Note that an unsatisfiable LTL formula
φ may have several UCs in LTL. If the UC of φ is obtained via Def. 10, 8, then Rem. 5 on
the determinants of a UC in SNF applies here, too. Moreover, using a different translation
from LTL into SNF instead of Def. 1 might also lead to a different UC in LTL from SNF.

10 We disregard the issue of the indices of the variables x,x′, . . ..
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We now complete the running example from Sec. 3 and the previous subsection. We
show how to obtain a UC of φ in LTL from SNF from the UC of φ in SNF. Remember
that the formula φ , which we would like to obtain a UC of, is (G(p∧q))∧F¬p (cf. (10)).
Moreover, the SNF of φ , C, on which in Fig. 5 we executed the algorithm in Fig. 3, is
{x1, G(¬x1∨Xx1), G(¬x1∨ x2), G(¬x2∨ p), G(¬x2∨q), x3, G(¬x3∨Fx4), G(¬p∨¬x4)}
(cf. (12)). Finally, the UC of φ in SNF, Cuc, is C \ {G(¬x2∨q)} (cf. (13)). Using the cor-
respondence of x1 to xG(p∧q), of x2 to xp∧q, of x3 to xF¬p, and of x4 to x¬p as well as the
definition of implication we rewrite11 the UC of φ in SNF, C to (19).

{(xG(p∧q)),
(G(xG(p∧q)→ XxG(p∧q))),
(G(xG(p∧q)→ xp∧q)),
(G(xp∧q→ p)),
(xF¬p),
(G(xF¬p→ Fx¬p)),
(G(x¬p→¬p))}

(19)

By careful inspection of (19) we see that q is the only subformula of φ whose proposition
according to column 2 of Tab. 1, which is q itself, does not occur in any clause of (19) in a
position that is marked blue boxed in Tab. 1. Hence, q is the only subformula to be replaced
by TRUE or FALSE in φ , yielding the UC of φ in LTL from SNF, φ uc, in (20).

φ
uc ≡ (G(p∧ TRUE))∧F¬p (20)

5 Post-Processing UCs

In this section we adapt two techniques to our setting of UCs for LTL that can be used to
make the UCs obtained so far more useful. Both techniques will typically be applied after
an initial UC has been obtained; hence, we term this section post-processing of UCs. First,
we discuss minimality of UCs. Then we show how to partition occurrences of propositions
in a UC according to whether they interact in a TR proof of unsatisfiability, leading to a
more fine-grained notion of UC. For a more advanced method of post-processing, which
extracts information on the time points at which occurrences of subformulas are relevant to
unsatisfiability, see [84].

5.1 Minimal UCs

In this subsection we introduce notions of and algorithms to obtain minimal UCs. The results
are either straightforward (Prop. 4) or well known (Def. 11, Rem. 9). Still, the material is
needed in the experimental evaluation, and within the flow of the article this seems to be the
appropriate place.

11 Notice that this is done purely for the convenience of the reader and does not correspond to a step in our
method for UC extraction.
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Definition 11 (Minimal UC in SNF and LTL) (See, e.g., [83]: irreducible UC) A UC Cuc

in SNF is minimal iff ∀c ∈ Cuc . Cuc \ {c} is satisfiable. A UC φ uc in LTL is minimal iff
there is no positive polarity occurrence of a subformula that can be replaced with TRUE and
no negative polarity occurrence of a subformula that can be replaced with FALSE without
making φ uc satisfiable.

Proposition 4 (Minimal UC in SNF No Guarantee for Minimal UC in LTL) Let φ be
an unsatisfiable LTL formula, let SNF(φ) be its SNF, let Cuc be a minimal UC of SNF(φ) in
SNF, and let φ uc be the UC of φ in LTL from SNF. Then φ uc is not necessarily minimal.

Proof Let φ ≡ (¬p)∧ ((G¬q)∧ (pUq)). Then

SNF(φ)≡

{(xφ ),
(G(xφ → x¬p)),
(G(x¬p→¬p)),
(G(xφ → x(G¬q)∧(pUq))),
(G(x(G¬q)∧(pUq)→ xG¬q)),
(G(xG¬q→ XxG¬q)),
(G(xG¬q→ x¬q)),
(G(x¬q→¬q)),
(G(x(G¬q)∧(pUq)→ xpUq)),
(G(xpUq→ (q∨p))),
(G(xpUq→ (q∨XxxpUq))),

(G(xpUq→ Fq))}

is its SNF according to Def. 1. A minimal UC of SNF(φ) in SNF is

Cuc ≡

{(xφ ),
(G(xφ → x¬p)),
(G(x¬p→¬p)),
(G(xφ → x(G¬q)∧(pUq))),
(G(x(G¬q)∧(pUq)→ xG¬q)),
(G(xG¬q→ x¬q)),
(G(x¬q→¬q)),
(G(x(G¬q)∧(pUq)→ xpUq)),
(G(xpUq→ (q∨p)))}.

Mapping Cuc back to a UC in LTL from SNF via Def. 10 yields φ . φ is not a minimal
UC, as the first conjunct ¬p can be replaced with TRUE while retaining unsatisfiability. This
concludes the proof. ut

Note that given φ from the proof of Prop. 4 our implementation actually produces φ as a
UC in LTL. This is due to the fact that the UC in SNF, Cuc, is found during the first execution
of saturation in line 2 of the algorithm in Fig. 3, while the contradiction between G¬q and
the eventuality part of pUq requires loop search, which is only performed at a later stage.

Note also that the result just proved depends on the notion of UC for LTL: the proof
above obviously does not hold, if the notion of UC allows to not only replace G¬q with
TRUE but also, alternatively, with ¬q and pUq not only with TRUE but also, alternatively,
with p∨q.
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Remark 9 (Extraction of Minimal UCs) A common way to obtain minimal UCs works by
repeatedly attempting to remove parts of a UC (e.g., [20, 6, 99, 68, 3, 95]). If the modified
formula is still unsatisfiable, then the removal is made permanent; otherwise the removal is
undone. The procedure continues until all parts of the UC have been considered for removal.
This is called deletion-based extraction of minimal UCs (e.g., [20, 68]).

In the case of LTL the algorithm attempts to replace positive polarity occurrences of
subformulas with TRUE and negative polarity ones with FALSE. It terminates, if no more
replacements can be performed without making the resulting formula satisfiable.

Naturally, this method may be expensive due to the number of satisfiability tests to be
performed. It is therefore often used to minimize a UC that has been obtained by other means
such as those described in Sec. 4 (see, e.g., [20, 6, 99, 68, 3, 95]). Potential optimizations
of the minimization algorithm include binary search (e.g., [98, 58, 68, 61]) and reusing
intermediate results (e.g., [95, 61]).

5.2 Grouping Propositions in UCs

In this subsection we show how to extract information from a TR proof of unsatisfiability on
which occurrences of same propositions in a UC actually need to be the same propositions to
retain unsatisfiability and which occurrences of same propositions might be substituted with
different propositions without losing unsatisfiability. This can provide helpful information
on the interaction of parts of a formula to a user who is debugging a specification.

5.2.1 Intuition

As an example consider
(p∧¬p)∨X((Gp)∧F¬p). (21)

Note that (21) is a minimal UC in LTL. However, from the point of view of unsatisfiability
of (21), the occurrences of p in p∧¬p “have nothing to do” with the occurrences of p in
X((Gp)∧F¬p). On the other hand, the first occurrence of p in p∧¬p must be an occurrence
of the same proposition as the second occurrence of p in p∧¬p to obtain unsatisfiability. The
same is true for the two occurrences of p in X((Gp)∧F¬p). Hence, the first two occurrences
of p in (21) could be substituted with, e.g., p0 and the second two occurrences with, e.g., p1,
obtaining (22). (22) retains unsatisfiability and the structure of (21).

(p0∧¬p0)∨X((Gp1)∧F¬p1) (22)

Note that, depending on the intended application of the UCs, (22) may or may not be
considered to be a valid notion of UC of (21). For the purpose of debugging specifications we
believe that this more fine-grained notion of UC can provide helpful additional information
to the user.

We call (22) a UC of (21) in LTL with grouped propositions. We use the term “group”
as a synonym to “partition” in order to avoid confusion with the notion of “partition” of
vertices in the resolution graph in Sec. 4.1.

The information required to construct a UC with grouped propositions is obtained by
observing the interaction of occurrences of propositions in a TR proof. Essentially, if two
occurrences of the same proposition p in an LTL formula φ are found not to be interacting
in a TR proof of the unsatisfiability of φ , then these occurrences of p can be substituted with
different propositions in a UC of φ without losing unsatisfiability.
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Let o and o′ be two occurrences of a proposition p in two SNF clauses c and c′. The
occurrences o and o′ in c and c′ can interact in four different ways:

1. c might be a premise and c′ might be a conclusion that is obtained from c (and pos-
sibly some other clauses) by application of a production rule from Tab. 2. Then, some
propositions may be transferred from c to c′. Occurrences of propositions that are sub-
ject to transfer from c to c′ are said to interact. For example, assume that (p∨q) and
(G((¬q)∨ r)) are resolved to (p∨ r) using init-in . Then the occurrence of p in the
premise (p∨q) is transferred to the occurrence of p in the conclusion (p∨ r), as is the
occurrence of r in the premise (G((¬q)∨ r)) to the occurrence of r in the conclusion
(p∨ r).

2. c and c′ might be resolved with each other using one of the saturation rules in Tab. 2.
Then the two occurrences of the proposition which is resolved upon (which have dif-
ferent polarity) are also said to interact. In the example above the occurrences of q in
(p∨q) and in (G((¬q)∨ r)) interact.

3. c and c′ might be eventuality clauses with the same eventuality literal. Then the two
occurrences of the eventuality literal are said to interact.

4. There might be a finite sequence of interactions of the former three kinds linking the
occurrences o and o′ in c and c′, i.e., we form the transitive closure of the interaction
relation.

5.2.2 Formalization — SNF

In Def. 12–14 we formalize the idea as follows.12 Each occurrence of a proposition in the
resolution graph is mapped to some group (here groups are arbitrarily represented by natural
numbers). If two occurrences of a proposition interact, then they are forced to be mapped
to the same group. In our example the occurrences of p in (p∨q) and in (p∨ r) might be
mapped to i∈N, the occurrences of q in (p∨q) and in (G((¬q)∨ r)) to i′ ∈N different from
i, and the occurrences of r in (G((¬q)∨ r)) and in (p∨ r) to i′′ ∈N different from both i and
i′. This leads to a partitioning of the occurrences of propositions in clauses labeling vertices
in the resolution graph. Occurrences in each partition are then replaced with a different
proposition.

Definition 12 (Grouping of Propositions in Resolution Graph) Let C ⊆ C be a set of
SNF clauses, and let G be a resolution graph with set of vertices V and labeling of vertices
with SNF clauses LV . Let O be the set of occurrences of propositions in clauses in C. Let
group be a mapping from pairs of vertices in V and occurrences of propositions in clauses
in C to groups inN, group : V ×O →N, fulfilling the following four conditions.

1. If (i) v0 is a vertex in V labeled with a clause c0: v0 ∈ V and LV (v0) = c0, (ii) v1 is
a vertex in V labeled with a clause c1: v1 ∈ V and LV (v1) = c1, (iii) c1 is a conclusion
obtained from premise c0 (and possibly other premises) by an application of a production
rule rule from Tab. 2 in G, (iv) o0 is an occurrence of a proposition p in c0, (v) o1
is an occurrence of a proposition q in c1, and (vi) rule constrains p in o0 and q in o1
to be the same proposition, then (v0,o0) and (v1,o1) are mapped to the same group:
group((v0,o0)) = group((v1,o1)).

12 Remember that in this section we only consider optimized resolution graphs and UCs in SNF via TR from
optimized resolution graphs, and we drop the designators “optimized” and “from an optimized resolution
graph”. Moreover, we drop general definitions and statements in the style of Def. 5 and Cor. 2 and restrict
ourselves to the specific cases á la Def. 8 and Thm. 2.
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2. If (i) v2 is a vertex in V labeled with a clause c2: v2 ∈V and LV (v2)= c2, (ii) v3 is a vertex
in V labeled with a clause c3: v3 ∈ V and LV (v3) = c3, (iii) c2 and c3 are premises in
the application of a production rule rule ∈ { init-ii , init-in , step-nn , step-nx , step-xx } from
Tab. 2 in G, (iv) o2 is the occurrence of the proposition r in c2 that is resolved upon in the
application of rule , and (v) o3 is the occurrence of the proposition r in c3 that is resolved
upon in the application of rule , then (v2,o2) and (v3,o3) are mapped to the same group:
group((v2,o2)) = group((v3,o3)).

3. If (i) v4 is a vertex in V labeled with an eventuality clause c4: v4 ∈V and LV (v4) = c4,
(ii) v5 is a vertex in V labeled with an eventuality clause c5: v5 ∈ V and LV (v5) = c5,
(iii) o4 is the occurrence of the eventuality literal l in c4, (iv) o5 is the occurrence of
the eventuality literal l in c5, then (v4,o4) and (v5,o5) are mapped to the same group:
group((v4,o4)) = group((v5,o5)).

4. If two pairs (v6,o6) and (v7,o7) are not (transitively) forced to be mapped to the same
group by the former three conditions, then they are mapped to different groups.

Then group is a grouping of propositions in a resolution graph.

Definition 13 (Grouping-Induced Substitution of Propositions in Resolution Graph)
Let C⊆C be a set of SNF clauses, and let G be a resolution graph with set of vertices V and
labeling of vertices with SNF clauses LV . Let O be the set of occurrences of propositions
in clauses in C. Let group be the grouping of propositions in G. Let f be an injective
mapping from the image of group to propositions AP: f : {i ∈N | ∃v ∈V . ∃o in LV (v) . i =
group((v,o))}→ AP such that f (i) = f (i′)⇒ i = i′. Then the composition of f and group,
subst = f ◦group, is a grouping-induced substitution of propositions in a resolution graph.

We extend the domain of subst to clauses in G and to G itself in the natural way. If the
vertex vc that a clause c is labeling is clear from the context, we write subst(c) instead of
subst(vc,c).

Definition 14 (UC in SNF via TR with Grouped Propositions) Let C be an unsatisfiable
set of SNF clauses, and let Cuc be a UC of C in SNF via TR. Let subst be the grouping-
induced substitution of propositions in a resolution graph. The UC of C in SNF via TR with
grouped propositions, Cuc

group, is obtained from the UC in SNF via TR Cuc by applying subst
to each clause in Cuc: Cuc

group = {subst(c) | c ∈Cuc}.

Assume that Def. 12–14 are applied to

C ≡ {(p∨q),(¬r),(G((¬p)∨Xr)),(G X¬r),(G((¬q)∨ r))}. (23)

Now it is easy to see that there exists a TR proof of the unsatisfiability of C such that both
occurrences of p are mapped to some group i, both occurrences of q are mapped to a different
group i′, the occurrences of r in (¬r) and in (G((¬q)∨ r)) are mapped to another group i′′,
and, finally, the remaining occurrences of r in (G((¬p)∨Xr)) and in (G X¬r) are mapped to
a last group i′′′. To obtain a UC of C in SNF via TR with grouped propositions we substitute
occurrences of propositions according to the groups they are mapped to: occurrences of
propositions are substituted with the same proposition if and only if they are mapped to the
same group. In the example (23) we obtain the following UC (24):

Cuc
group ≡ {(p∨q),(¬r0),(G((¬p)∨Xr1)),(G X¬r1),(G((¬q)∨ r0))}. (24)

The proof of correctness in Thm. 4 is essentially by saying that the TR proof for the
unsatisfiability of a UC in SNF via TR is also a TR proof for the unsatisfiability of a UC in
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SNF via TR with grouped propositions modulo renaming of some occurrences of proposi-
tions. Before stating Thm. 4 we mention some properties of group and subst required in its
proof of correctness.

Remark 10 (group Maps Different Propositions to Different Groups) Let C be a set of SNF
clauses, let G be a resolution graph with set of vertices V and labeling of vertices with SNF
clauses LV , and let group be the grouping of propositions in a resolution graph. group maps
occurrences of different propositions to different groups: if (i) v is a vertex in V labeled
with a clause c: v ∈V and LV (v) = c, (ii) v′ is a vertex in V labeled with a clause c′: v′ ∈V
and LV (v′) = c′, (iii) o is an occurrence of a proposition p in c, (iv) o′ is an occurrence of a
proposition q in c′, and (v) p 6= q, then group((v,o)) 6= group((v′,o′)). Given the injectivity
of f in Def. 13 this directly extends to subst.

Remark 11 (subst Does Not Change Polarity of Literal) Let C be a set of SNF clauses, let
G be a resolution graph, and let subst be the grouping-induced substitution of propositions
in a resolution graph. Then subst does not change the polarity of a literal in a clause.

Remark 12 (subst Does Not Change Time of Literal) Let C be a set of SNF clauses, let G
be a resolution graph, and let subst be the grouping-induced substitution of propositions
in a resolution graph. Then subst maps an initial literal to an initial literal, a literal in the
now part to a literal in the now part, a literal in the X part to a literal in the X part, and an
eventuality literal to an eventuality literal.

Theorem 4 (Unsatisfiability of UC in SNF via TR with Grouped Propositions) Let C be
an unsatisfiable set of SNF clauses, and let Cuc

group be a UC of C in SNF via TR with grouped
propositions. Then Cuc

group is unsatisfiable.

Proof Let Cuc be the UC in SNF via TR. Let G be the resolution graph with set of vertices V
and labeling of vertices with SNF clauses LV . Let subst be the grouping-induced substitution
of propositions in a resolution graph. Let Ggroup = subst(G).

Possibly contrary to Def. 12, 13 we assume that subst maps occurrences of same propo-
sitions wl0 introduced by augmentation aug1 , aug2 to same propositions. Note that proposi-
tions wl0 do not occur in Cuc and, therefore, their images under subst do not occur in Cuc

group.
Hence, if we can show unsatisfiability of Cuc

group under this assumption, then we have shown
unsatisfiability of Cuc

group.
Below we show that each application of a production rule rule to clauses labeling some

vertices in G is also an application of rule to the clauses labeling these vertices in Ggroup.
This establishes that Ggroup represents a (possibly partial) TR proof. Consider the following
cases:

init-ii Let v,v′,v′′ ∈ V with LV (v) = c, LV (v′) = c′, and LV (v′′) = c′′ where c′′ is obtained
from c and c′ by applying init-ii . By Rem. 12 subst(c), subst(c′), and subst(c′′) are initial
clauses. Let l0, ¬l0 be the resolved upon literals in c and c′. By Def. 12, 13 subst maps
these occurrences of l0 and ¬l0 to opposite polarity occurrences of some proposition
p in subst(c) and subst(c′). Let there be an occurrence of a not resolved upon literal
l1 6= p,¬p in subst(c) (resp. subst(c′)). By Def. 12, 13 there is an occurrence o of a
literal l2 in c (resp. c′) such that subst(v,o) = l1. By rule init-ii there is a corresponding
occurrence of l2 in c′′. By Def. 12, 13 subst maps that occurrence of l2 to an occurrence
of l1 in subst(c′′). Let there be an occurrence of a literal l3 in subst(c′′). By Def. 12,
13 there is an occurrence o′ of a literal l4 in c′′ such that subst(v′′,o′) = l3. By rule
init-ii there is a corresponding occurrence of l4 in c or c′. By Def. 12, 13 subst maps that
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occurrence of l4 to an occurrence of l3 in subst(c) or subst(c′). This shows that subst(c′′)
can be obtained by applying init-ii to subst(c) and subst(c′).

init-in , step-nn Similar to the case of init-ii .
step-nx , step-xx Similar to the case of init-ii when considering now and X parts separately

as appropriate.
aug1 Let v,v′ ∈V with LV (v) = c and LV (v′) = c′ where c′ is obtained from c by applying

aug1 , l0 is the eventuality literal in c, and wl0 is the fresh literal introduced by aug1 and
aug2 for all eventuality clauses in G with eventuality literal l0. By Rem. 12 subst(c) is

an eventuality clause and subst(c′) is a global clause with empty X part. By Def. 12,
13 subst maps the occurrences of l0 as the eventuality literal in c and in c′ to two oc-
currences of some literal l1 as the eventuality literal in subst(c) and in subst(c′). By
Def. 12, 13 subst maps the occurrence of wl0 in c′ to an occurrence of some literal wl1
in subst(c′). By Rem. 10 wl1 is fresh. By Def. 12, 13 and the assumption above wl1 is the
fresh literal introduced by aug1 and aug2 for all eventuality clauses in Ggroup with even-
tuality literal l1. Let there be an occurrence of a literal l2 in the now part of subst(c).
By Def. 12, 13 there is an occurrence o of a literal l3 in the now part of c such that
subst(v,o) = l2. By rule aug1 there is a corresponding occurrence of l3 in c′. By Def. 12,
13 subst maps that occurrence of l3 to an occurrence of l2 in subst(c′). Let there be an
occurrence of a literal l4 6= l1,wl1 in subst(c′). By Def. 12, 13 there is an occurrence o′

of a literal l5 in c′ such that subst(v′,o′) = l4. By rule aug1 there is a corresponding oc-
currence of l5 in the now part of c. By Def. 12, 13 subst maps that occurrence of l5 to an
occurrence of l4 in the now part of subst(c). This shows that subst(c′) can be obtained
by applying aug1 to subst(c).

aug2 Let v ∈V with LV (v) = c where c is obtained by applying aug2 to eventuality clauses
with eventuality literal l0. By Def. 12, 13 and the assumption above subst(c) is of the
form (G((¬wl1)∨X(l1∨wl1))) for some l1, wl1. By Def. 12, 13 l1 is unique for all
occurrences of l0 as eventuality literal in G. By Rem. 10 wl1 is fresh. By Def. 12, 13
and the assumption above wl1 is the fresh literal introduced by aug1 and aug2 for all
eventuality clauses in Ggroup with eventuality literal l1. This shows that subst(c) can be
obtained by applying aug2 to eventuality clauses with eventuality literal l1.

BFS-loop-it-init-x Let v,v′ ∈ V with LV (v) = c and LV (v′) = c′ where c′ is obtained from c
by applying BFS-loop-it-init-x . By Rem. 12 subst(c) and subst(c′) are global clauses with
non-empty X part. Let there be an occurrence of a literal l0 in the now (resp. X) part of
subst(c). By Def. 12, 13 there is an occurrence o of a literal l1 in the now (resp. X) part of
c such that subst(v,o) = l0. By rule BFS-loop-it-init-x there is a corresponding occurrence
of l1 in the now (resp. X) part of c′. By Def. 12, 13 subst maps that occurrence of l1 to
an occurrence of l0 in the now (resp. X) part of subst(c′). Let there be an occurrence of
a literal l2 in the now (resp. X) part of subst(c′). By Def. 12, 13 there is an occurrence
o′ of a literal l3 in the now (resp. X) part of c′ such that subst(v′,o′) = l2. By rule
BFS-loop-it-init-x there is a corresponding occurrence of l3 in the now (resp. X) part of c. By

Def. 12, 13 subst maps that occurrence of l3 to an occurrence of l2 in the now (resp. X)
part of subst(c). This shows that subst(c′) can be obtained by applying BFS-loop-it-init-x

to subst(c).
BFS-loop-it-init-n Similar to the case of BFS-loop-it-init-x .
BFS-loop-it-init-c First, consider the case that the current BFS loop search iteration is the sec-

ond or later iteration of a BFS loop search. Let v,v′,v′′ ∈V with LV (v) = c, LV (v′) = c′,
and LV (v′′) = c′′ where c′′ is obtained from global clause with empty X part c and
eventuality clause c′ with eventuality literal l0 by applying BFS-loop-it-init-c . By Rem. 12
subst(c) is a global clause with empty X part, subst(c′) is an eventuality clause, and
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subst(c′′) is a global clause with empty now part. By rule BFS-loop-it-init-c there is a cor-
responding occurrence of l0 in c′′. By Def. 12, 13 subst maps these occurrences of l0
to occurrences of some literal l1 as the eventuality literal in subst(c′) and as a disjunct
in subst(c′′). Let there be an occurrence of a literal l2 in subst(c). By Def. 12, 13 there
is an occurrence o of a literal l3 in c such that subst(v,o) = l2. By rule BFS-loop-it-init-c

there is a corresponding occurrence of l3 in c′′. By Def. 12, 13 subst maps that occur-
rence of l3 to an occurrence of l2 in subst(c′′). Let there be an occurrence of a literal
l4 6= l1 in subst(c′′). By Def. 12, 13 there is an occurrence o′ of a literal l5 in c′′ such
that subst(v′′,o′) = l4. By rule BFS-loop-it-init-c there is a corresponding occurrence of l5
in c. By Def. 12, 13 subst maps that occurrence of l5 to an occurrence of l4 in subst(c).
Note that following the reasoning in Thm. 2 it is not necessary to show that subst(c)
originated in the previous BFS loop search iteration. Hence, this shows that subst(c′′)
can be obtained by applying BFS-loop-it-init-c to subst(c) and subst(c′).
Now consider the case that the current BFS loop search iteration is the first iteration of
a BFS loop search. In that case there essentially is no premise 1 c. Hence, this case is a
trivial special case of the previous case.

BFS-loop-it-sub Let v,v′ ∈ V with LV (v) = c and LV (v′) = c′ where c′ is “obtained” from
c by applying BFS-loop-it-sub . Let o be the occurrence of the eventuality literal l0 in c′

that the loop search in G is for. Let subst(v′,o) = l1. By Rem. 12 subst(c) is a global
clause with empty X part and subst(c′) is a global clause with empty now part. Using an
inductive argument on the sequence in which clauses labeling vertices in G are generated
by the algorithm in Fig. 3 one can see that subst(c′) was generated by an application of
BFS-loop-it-init-c . Let there be an occurrence of a literal l2 in subst(c). By Def. 12, 13 there

is an occurrence o′ of a literal l3 in c such that subst(v,o′) = l2. By rule BFS-loop-it-sub

there is a corresponding occurrence of l3 6= l0 in c′. By Def. 12, 13 subst maps that
occurrence of l3 to an occurrence of l2 6= l1 in subst(c′). This shows that subst(c′) can
be obtained by applying BFS-loop-it-sub to subst(c).

BFS-loop-conclusion1 Let v,v′,v′′ ∈V with LV (v) = c, LV (v′) = c′, and LV (v′′) = c′′ where c′′

is obtained by applying BFS-loop-conclusion1 to a global clause with empty X part c derived
in a successful BFS loop search iteration and an eventuality clause c′ with eventuality
literal l0. By Rem. 12 subst(c′) is an eventuality clause and subst(c) and subst(c′′) are
global clauses with empty X part. By rule BFS-loop-conclusion1 there is a corresponding
occurrence of l0 in c′′. By Def. 12, 13 subst maps these occurrences of l0 to occurrences
of some literal l1 as the eventuality literal in subst(c′) and as a disjunct in subst(c′′).
Let there be an occurrence of a literal l2 in the now part of subst(c) (resp. subst(c′)).
By Def. 12, 13 there is an occurrence o of a literal l3 in the now part of c (resp. c′)
such that subst(v,o) = l2 (resp. subst(v′,o) = l2). By rule BFS-loop-conclusion1 there is a
corresponding occurrence of l3 in c′′. By Def. 12, 13 subst maps that occurrence of
l3 to an occurrence of l2 in subst(c′′). Let there be an occurrence of a literal l4 6= l1
in subst(c′′). By Def. 12, 13 there is an occurrence o′ of a literal l5 in c′′ such that
subst(v′′,o′) = l4. By rule BFS-loop-conclusion1 there is a corresponding occurrence of l5 in
the now part of c or c′. By Def. 12, 13 subst maps that occurrence of l5 to an occurrence
of l4 in the now part of subst(c) or subst(c′). Except for the requirement that subst(c)
was derived in a successful BFS loop search iteration this shows that subst(c′′) can be
obtained by applying BFS-loop-conclusion1 to subst(c) and subst(c′).

BFS-loop-conclusion2 Let v,v′,v′′ ∈V with LV (v) = c, LV (v′) = c′, and LV (v′′) = c′′ where c′′

is obtained by applying BFS-loop-conclusion2 to a global clause with empty X part c derived
in a successful BFS loop search iteration and an eventuality clause c′ with eventuality
literal l0. By Rem. 12 subst(c) is a global clause with empty X part, subst(c′) is an
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eventuality clause, and subst(c′′) is a global clause. By rule BFS-loop-conclusion2 there is
a corresponding occurrence of l0 in the X part of c′′. By Def. 12, 13 subst maps these
occurrences of l0 to occurrences of some literal l1 as the eventuality literal in subst(c′)
and as a disjunct in the X part of subst(c′′). By Def. 12, 13 subst maps the occurrence
of ¬wl0 in the now part of c′′ to an occurrence of some literal ¬wl1 in the now part of
subst(c′′). By Def. 12, 13 and the assumption above wl1 is the fresh literal introduced by
aug1 and aug2 for all eventuality clauses in Ggroup with eventuality literal l1. Let there be

an occurrence of a literal l2 in subst(c). By Def. 12, 13 there is an occurrence o of a literal
l3 in c such that subst(v,o) = l2. By rule BFS-loop-conclusion2 there is a corresponding
occurrence of l3 in the X part of c′′. By Def. 12, 13 subst maps that occurrence of l3
to an occurrence of l2 in the X part of subst(c′′). Let there be an occurrence of a literal
l4 6= l1 in the X part of subst(c′′). By Def. 12, 13 there is an occurrence o′ of a literal
l5 in the X part of c′′ such that subst(v′′,o′) = l4. By rule BFS-loop-conclusion2 there is a
corresponding occurrence of l5 in c. By Def. 12, 13 subst maps that occurrence of l5
to an occurrence of l4 in subst(c). Except for the requirement that subst(c) was derived
in a successful BFS loop search iteration this shows that subst(c′′) can be obtained by
applying BFS-loop-conclusion2 to subst(c) and subst(c′).

It remains to show that a successful BFS loop search iteration in G is also a successful BFS
loop search iteration in Ggroup. Let v ∈ V with LV (v) = c such that subst(c) was generated
by BFS-loop-it-init-c . As shown above c was also generated by BFS-loop-it-init-c . If the BFS loop
search iteration that c is part of was successful, then there exists v′ ∈ V with LV (v′) = c′

such that c′ is part of the same BFS loop search iteration as c and c and c′ are connected by
an application of BFS-loop-it-sub . As shown above subst(c) and subst(c′) are connected by an
application of BFS-loop-it-sub .

Clearly, for any clause c, subst(c) cannot be larger than c. Moreover, with Rem. 10,
subst(c) cannot be smaller than c. Hence, the empty clause (and, therefore, unsatisfiability)
is derived in the proof on Cuc

group at the same place as in the proof on Cuc. This concludes the
proof. ut

5.2.3 Formalization — LTL

In order to map a UC in SNF via TR with grouped propositions to a UC in LTL via TR
with grouped propositions we need to take the translation from LTL into SNF and back in
Sec. 3.3, 4.2 into account. Assume an occurrence of a proposition p in a subformula ψ . De-
pending on ψ that single occurrence of p in ψ may be translated into multiple occurrences
of p in SNF(ψ). For example, if ψ ≡ qUp under positive polarity, then ψ is translated into
(G(xψ → (p∨q))), (G(xψ → (p∨Xxψ))), and (G(xψ → Fp)). Now, even if these occur-
rences of p in the UC of SNF(ψ) in SNF via TR with grouped propositions are mapped to
different groups (and therefore are substituted with different propositions in the UC in SNF
via TR with grouped propositions), we must ensure that the occurrence of p in the UC in
LTL via TR with grouped propositions is substituted with a unique proposition such that
unsatisfiability of the result is guaranteed. This can be achieved by merging some groups
in the mapping group: if two occurrences of a proposition p in the set of starting clauses
SNF(φ) were obtained from the same occurrence of p in the LTL formula φ , then these
occurrences of p must be mapped to the same group. Notice that now all occurrences of a
proposition p in the UC of φ in SNF via TR that were obtained from the same occurrence of
p in φ are mapped to the same group. This allows to transfer the grouping of occurrences of
propositions from SNF to LTL. This is stated more formally in Def. 15–17.
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Definition 15 (Grouping of Propositions in Resolution Graph for LTL) Let φ be an LTL
formula, let SNF(φ) be the SNF of φ , let G be a resolution graph with set of vertices V and
labeling of vertices with SNF clauses LV , and let group be the grouping of propositions in a
resolution graph. Let groupLT L be obtained from group by merging some groups as follows.
Let c and c′ be two clauses obtained from translating the occurrence of a subformula ψ in
φ , let v and v′ be the unique vertices in the main partition of G labeled with c and c′, and let
o and o′ be two occurrences of the same proposition in c and c′ that are marked blue boxed
in Tab. 1. Let group((v,o)) = i and group((v′,o′)) = i′. Then all pairs (v′′,o′′) in the domain
of group that are mapped to i or to i′ in group are mapped to the same group i′′ in groupLT L.
groupLT L is the grouping of propositions in a resolution graph for LTL.

Inspection of Tab. 1 shows that the only propositions whose groups might be merged
because of Def. 15 are propositions representing the right hand operand of a positive polarity
occurrence of a U formula or of a negative polarity occurrence of a R formula.

Definition 16 (Grouping-Induced Substitution of Propositions in Resolution Graph for
LTL) Let φ be an unsatisfiable LTL formula, let SNF(φ) be the SNF of φ , let Cuc be a UC
of SNF(φ) in SNF via TR, let G be the resolution graph with set of vertices V and labeling
of vertices with SNF clauses LV , and let groupLT L be the grouping of propositions in a
resolution graph for LTL. Let g be a mapping from occurrences of propositions in φ to sets
of occurrences of propositions in SNF(φ) that maps an occurrence of a proposition p in φ

to the set of occurrences of p in SNF(φ) that are induced by the occurrence of p in φ . Let
fLT L be an injective mapping from the image of groupLT L to propositions AP: fLT L : {i ∈
N | ∃v ∈V . ∃o in LV (v) . i = groupLT L((v,o))}→ AP such that fLT L(i) = fLT L(i′)⇒ i = i′.
Extend subst to LTL as follows. Use g to map an occurrence o of a proposition in φ uc to a
set of occurrences O in SNF(φ). Choose an occurrence o′ ∈ O that is also an occurrence in
Cuc. Use fLT L ◦groupLT L to map o′ to a proposition p∈ AP. The resulting mapping substLT L
is the grouping-induced substitution of propositions for LTL.

We extend the domain of substLT L from occurrences of propositions in φ uc to φ uc in the
natural way.

Definition 17 (UC in LTL via TR with Grouped Propositions) Let φ be an unsatisfiable
LTL formula, let φ uc be its UC in LTL obtained using Def. 10, 8, and let substLT L be the
grouping-induced substitution of propositions in a resolution graph for LTL. Then φ uc

group =
substLT L(φ

uc) is the UC of φ in LTL via TR with grouped propositions.

Theorem 5 (Unsatisfiability of UC in LTL via TR with Grouped Propositions) Let φ

be an unsatisfiable LTL formula, and let φ uc
group be a UC of φ in LTL via TR with grouped

propositions. Then φ uc
group is unsatisfiable.

Proof (Sketch.) Let φ uc be the UC of φ in LTL obtained using Def. 10, 8, let SNF(φ uc) be
the SNF of φ uc, let Cuc be the UC of φ in SNF via TR, let SNF(φ uc

group) be the SNF of φ uc
group,

let Cuc
group be the UC of φ in SNF via TR with grouped propositions, and let Cuc

groupLT L
be

as Cuc
group but using groupLT L instead of group in its construction. By the proof of Thm. 3

SNF(φ uc) is a superset of Cuc. By that fact and by the construction of φ uc
group SNF(φ uc

group) is
a superset of Cuc

groupLT L
. By Thm. 4 Cuc

group and, thus, Cuc
groupLT L

is unsatisfiable. Hence, so is
φ uc

group. This concludes the proof. ut
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6 Relation to Mutual Vacuity

In this section we explain that, under the frequently legitimate assumption that a system
description can be translated into an LTL formula, our results extend to vacuity for LTL
[44, 9, 65, 2, 92, 40, 64]. In [44] Gurfinkel and Chechik introduce the notion of mutual
vacuity. We prove that the problems of finding a UC of an unsatisfiable formula φ in LTL
and of finding a set of subformula occurrences O of an LTL specification φ such that φ is
mutually vacuously TRUE in O in a system ζ can be reduced to each other. For some more
discussion on the relation between UCs and vacuity see also [83].

Given a system description ζ and a specification φ formal verification (e.g., [73]) proves
or disproves that the system description ζ conforms to the specification φ . If the system
description ζ conforms to the specification φ , then we say that φ holds in ζ or that φ is
TRUE in ζ . For a specification φ given as an LTL formula φ is TRUE in ζ iff every execution
of ζ satisfies φ . Note that if the system description itself is given as an LTL formula, then
conformance of ζ to φ corresponds to implication: φ is TRUE in ζ iff ζ → φ .

Remark 13 (LTL Formal Verification as LTL Satisfiability) Let ζ be a system description in
LTL. Let φ be a specification in LTL. Then φ is TRUE in ζ iff ζ ∧¬φ is unsatisfiable.

The fact that a system description conforms to a specification does not mean that all is
well. An example is antecedent failure [8], where some specification φ ≡G(ψ → ψ ′) holds
in a system description ζ , but the antecedent ψ never becomes TRUE in any execution of
ζ . In that case the consequent ψ ′ plays no role in determining that φ holds in ζ . That often
indicates presence of a problem in the specification or in the system description [9].

Vacuity generalizes that idea as follows [9, 65]. Let ζ be a system description, let φ

be an LTL specification such that φ is TRUE in ζ , and let ψ be a positive (resp. negative)
polarity occurrence of a subformula in φ . Let φ ′ be obtained from φ by replacing ψ with
FALSE (resp. TRUE). If the modified specification φ ′ still holds in ζ , then apparently ψ has
no influence on φ being TRUE in ζ in the following sense: ψ could be replaced with any LTL
formula in φ and the modified specification would still be TRUE in ζ . In that case we say that
φ is vacuously TRUE in ζ . As an example consider a system ζ such that p∧ (¬q)∧ r∧ (¬s)
is an invariant of ζ , i.e., it holds in every reachable state of ζ . Let the specification be
φ ≡G((p∨q)∧ (r∨ s)). φ is vacuously TRUE in ζ , as φ is TRUE in ζ and either q or s could
be replaced with FALSE without falsifying φ in ζ .

Mutual vacuity [44] extends that idea to simultaneously replacing several subformulas
with FALSE or TRUE depending on their polarity. In our example q and s could simultane-
ously be replaced with FALSE without falsifying φ in ζ . This is not the case for any other
pair of propositions in φ . Definition 18 formalizes that notion. Proposition 5 then shows that
the problems of determining mutual vacuity and of finding UCs in LTL can be reduced to
each other.

Definition 18 (Mutual Vacuity) Let ζ be a system description. Let φ be a specification
in LTL such that φ is TRUE in ζ . Let O be a set of disjoint subformula occurrences in φ .
Then φ is mutually vacuously TRUE in O in ζ iff the modification φ ′ of φ that replaces those
members of O that have positive (resp. negative) polarity in φ with FALSE (resp. TRUE) is
TRUE in ζ .

Proposition 5 (Reducibility between Mutual Vacuity and UCs in LTL) The problems
of finding a UC of an unsatisfiable formula φ in LTL and of finding a set of subformula
occurrences O of an LTL specification φ that is TRUE in an LTL system description ζ such
that φ is mutually vacuously TRUE in O in ζ can be reduced to each other.
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Proof The proof is essentially by the respective definitions.
Assume that φ is mutually vacuously TRUE in O in ζ . Let φ ′ be φ with positive

(resp. negative) polarity members of O replaced with FALSE (resp. TRUE). Then (i) µ ≡
ζ ∧¬φ is unsatisfiable. (ii) µ ′ ≡ ζ ∧¬φ ′ is unsatisfiable. µ ′ is a UC of µ in LTL.

Assume that φ is an unsatisfiable LTL formula with UC φ uc. Then there exists a non-
empty set of subformula occurrences O′ in φ such that φ uc is obtained from φ by replacing
positive (resp. negative) polarity members of O′ with TRUE (resp. FALSE). Now obviously
(i) TRUE∧¬¬φ is unsatisfiable and (ii) TRUE∧¬¬φ uc is unsatisfiable. I.e., ¬φ is mutually
vacuously TRUE in O′ in the unconstrained system TRUE. ut

A limited number of tools have been made available that can determine vacuity.
Aardvark [77] computes — depending on configuration — maximal or maximum mutual
vacuity for LTL using VIS [94] as a backend. Aardvark uses binary search and counterex-
amples to reduce the search space in the lattice of candidate strengthened specifications;
it does not use proofs for passing specifications to obtain an initial candidate strengthened
specification. Hence, our method is complementary. We performed a small set of trials with
Aardvark on some of our benchmarks, mostly the smaller ones from each family. Within
this, admittedly limited, set of trials we ran into problems with usability (often getting as-
sertion violations or segmentation faults rather than error messages pointing to potential
problems in our input) as well as scalability.13 We therefore opted not to perform a com-
parison on the full set of benchmarks. VaqTree [91] implements the method of [92] that
computes k-step vacuity for LTL, i.e., whether an occurrence of an atomic proposition is
vacuous when bounded model checking runs only up to some bound k are considered; the
problem of removing the bound k is left open. The NuSMV Model Advisor14 computes the
set of all occurrences of atomic propositions that are vacuous (but not necessarily mutually
vacuous) for LTL. VaqUoT [41], a simplified implementation of [44], computes the set of
all occurrences of atomic propositions that are vacuous (but not necessarily mutually vac-
uous) for CTL. A proof-based formulation of vacuity is suggested by Namjoshi [71]; no
implementation or experiments are reported.

7 Experimental Evaluation

Our implementation, examples, and log files are available from http://www.schuppan.

de/viktor/actainformatica15/.

7.1 Implementation

We implemented extraction of UCs as described in Sec. 4 in TRP++. We also imple-
mented deletion-based minimization of UCs (Sec. 5.1) and grouping of propositions in UCs

13 Note that in vacuity checking it is typically assumed that the system description is more complex than the
specification, while in UC extraction all complexity is in the formula at hand. When (as we did in our trials)
using the reduction from LTL UC extraction to vacuity checking from Prop. 5 the resulting vacuity checking
instance consists of a trivial system description and a complex specification. In practice, when the vacuity
checking procedure is tuned to take advantage of the small specification/complex system description scenario,
then complex specifications may lead to problems; it seems that the scalability problems we observed with
Aardvark are caused to some extent by the translation from the LTL specification into an explicit Büchi
automaton performed in VIS.

14 http://code.google.com/a/eclipselabs.org/p/nusmv-tools/downloads/detail?name=
NuSMVModelAdvisor_20121012.zip

http://www.schuppan.de/viktor/actainformatica15/
http://www.schuppan.de/viktor/actainformatica15/
http://code.google.com/a/eclipselabs.org/p/nusmv-tools/downloads/detail?name=NuSMVModelAdvisor_20121012.zip
http://code.google.com/a/eclipselabs.org/p/nusmv-tools/downloads/detail?name=NuSMVModelAdvisor_20121012.zip
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(Sec. 5.2). TRP++ provides a translation from LTL into SNF via an external tool. To facilitate
tracing a UC in SNF back to the input formula in LTL we implemented a translator from
LTL into SNF inside TRP++. We used parts of TSPASS15 [67] for our implementation. For
data structures we used C++ Standard Library containers (e.g., [57]), for graph operations
the Boost Graph Library16 [90].

Our translator from LTL into SNF reimplements ideas from the external translator,
among them (i) normalizing and simplifying the LTL formula before translation, (ii) sharing
the translation of several occurrences of the same subformula, and (iii) avoiding translation
for SNF clauses in the input formula. In addition, we implemented pure literal simplification
for LTL [22] for SNF clauses.

On the one hand, these optimizations are crucial for good performance. On the other
hand, most optimizations change the input that is provided by the user before it is passed to
our method for UC extraction, which potentially makes it harder for the user to understand
how the UC she obtains corresponds to the input she provided. Therefore, for each such
optimization we provide a command line option that disables the optimization. Mapping the
optimized formula back to the input formula is left as future work.

Clearly, not solving a given LTL formula due to reaching run time or memory limits is
the least useful result for a user. Hence, we assume the following usage model. A user will
first enable all optimizations for the translation from LTL into SNF in order to solve a given
LTL formula. If she cannot understand how the UC she obtains corresponds to the input she
provided, she will selectively disable some of these optimizations. Notice that at that stage
the user may already be able to exclude some parts of the LTL formula from consideration
and, therefore, provide a reduced input to the solver. Based on these assumptions our imple-
mentation enables all optimizations for the translation from LTL into SNF by default. With
one exception discussed next we used these default settings for all experiments reported in
this article.

In previous versions of this work (including [85]) we used sharing of same polarity
occurrences of a subformula in the translation from LTL into SNF. This turned out to neg-
atively impact grouping of propositions in a UC. Hence, for better comparison all results
reported in this article were obtained with sharing of same polarity occurrences of a sub-
formula in the translation from LTL into SNF disabled. The data available from http:

//www.schuppan.de/viktor/actainformatica15/ include results with both sharing
disabled and sharing enabled.

By default our implementation uses optimized resolution graphs to extract a UC (Def. 2,
3, 7, 8) and employs the optimizations in Rem. 6, 7. The results reported in this section were
obtained with these optimizations enabled except in Sec. 7.5, where we evaluate the benefit
of the optimizations.

7.2 Benchmarks

Our examples are based on [87]. In categories crafted and random and in family forobots
we considered all unsatisfiable instances from [87]. The version of alaska lift used here con-
tains a small bug fix: in [29, 87] the subformula Xu was erroneously written as literal Xu.
Combining two variants of alaska lift with three different scenarios we obtain six subfami-
lies of alaska lift. For anzu genbuf we invented three scenarios to obtain three subfamilies.

15 http://www.csc.liv.ac.uk/~michel/software/tspass/
16 http://www.boost.org/doc/libs/release/libs/graph/

http://www.schuppan.de/viktor/actainformatica15/
http://www.schuppan.de/viktor/actainformatica15/
http://www.csc.liv.ac.uk/~michel/software/tspass/
http://www.boost.org/doc/libs/release/libs/graph/
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Table 3 Overview of benchmark families
family source solved  size of

largest
solved
instance

 solved solved solved
instances instances instances instances
no UC UC minimal UC grpd. prop. UC
extraction extraction extraction extraction

application
alaska lift [48, 29] 70 (4605) 69 69 69
anzu genbuf [15] 15 (1924) 15 15 15
forobots [10] 25 (635) 25 25 25

crafted
schuppan O1formula [87] 27 (4006) 27 27 27
schuppan O2formula [87] 8 (91) 8 8 8
schuppan phltl [87] 4 (125) 4 4 4

random
rozier random [80] 61 (155) 61 61 61
trp [55] 397 (1421) 397 330 397

For benchmark families in categories application and crafted, which consist of se-
quences of instances of increasing difficulty, we stopped after two instances that could not
be solved due to time or memory out. For benchmark families in category random, which
consist of sequences of sets of instances of increasing size, we stopped after no instance was
solved in three consecutive size levels. Some instances were simplified to FALSE during the
translation from LTL into SNF; these instances were discarded.

In Tab. 3 we give an overview of the benchmark families. Columns 1 and 2 give the
name and the source of the family. Columns 3, 5–7 list the numbers of instances that were
solved by our implementation without UC extraction, with UC extraction, with minimal UC
extraction, and with grouped propositions UC extraction. Column 4 indicates the size (as
the number of nodes in the syntax tree) of the largest instance solved without UC extraction.

7.3 Setup

The experiments were performed on a laptop with an Intel Core i7 M 620 processor at 2
GHz running Ubuntu 14.04. Run time and memory usage were measured with run17. The
time and memory limits were 600 seconds and 6 GB.

7.4 Extraction of UCs

In Fig. 6 (a), (b) we show the overhead that is incurred by extracting UCs as described in
Sec. 4 over not extracting UCs. In Fig. 6 (c) we compare the sizes of the input formulas with
the sizes of their UCs. For plots by category see App. B of [86].

Out of the 749 instances of all categories we considered with UC extraction disabled, 48
were simplified to FALSE in the translation into SNF, 607 were shown to be unsatisfiable by
TR, and 94 remained unsolved. Enabling UC extraction results in one time out out of 607
instances.

The run time overhead for instances that take at least 0.7 seconds to solve without UC
extraction, except for those of the trp N12y subfamily, is at most 65 %. Instances of the

17 http://fmv.jku.at/run/

http://www.schuppan.de/viktor/actainformatica15/VSchuppan-Acta-Informatica-2015-full.pdf#appendix.B
http://fmv.jku.at/run/
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Fig. 6 Comparison of UC extraction (y-axis) with no UC extraction (x-axis). (a) and (b) show the overhead
incurred in terms of run time (in seconds) and memory (in MB). (c) shows the size reduction obtained, where
size is measured as the number of nodes in the syntax trees. The off-center diagonal in (a) and (b) indicates
where y = 2x.

trp N12y subfamily incur a run time overhead between 150 and 300 %, which is the maxi-
mum overhead on our examples.

The memory overhead for instances that take at least 0.2 seconds to solve without UC
extraction is at most 526 %. Note that peak memory usage with UC extraction was less than
200 MB.

In category application three subfamilies of family alaska lift and all subfamilies of
family anzu genbuf have UCs of constant size, which are found by TRP++. The UCs of
instances of these two families are at least 76 % smaller than the input formulas. Instances of
family forobots are reduced between 47 % and 97 % with the median at 77 %. In category
crafted family schuppan O1formula also has UCs of constant size, which are found by
TRP++. Instances of family schuppan O2formula are themselves minimal UCs. Instances
of schuppan phltl have minimal UCs in which one top-level conjunct is removed from
the input formula, which are found by TRP++ without minimization. In category random
instances of family rozier random are reduced between 6 % and 95 % with the median at
75 %. Instances of family trp exhibit minimum, median, and maximum reductions of 26 %,
57 %, and 88 %, respectively.

Our data show that extraction of UCs is possible with quite acceptable overhead in run
time and memory usage. The resulting UCs are often significantly smaller than the input
formula.

7.5 Optimizations

In Fig. 7 we show the benefit of the optimizations described in Rem. 6 and in Sec. 4.1.2
when extracting UCs. We show the impact on the peak size of the resolution graph rather
than on run time or memory, as the former is implementation independent.

The impact of including premise 1 of BFS-loop-it-init-c during the construction of the res-
olution graph and disabling immediate pruning of vertices and edges in partitions of failed
loop search iterations from the resolution graph in Fig. 7 (b) (the former implies the lat-
ter) and of disabling pruning non-reachable vertices from the resolution graph between loop
searches in Fig. 7 (e) is quite significant. In Fig. 7 (b) the median increase of the peak size
of the resolution graph is 39 %, the maximum is 1339 %. In Fig. 7 (e) slightly more than
half of all instances exhibit no change in the size of the resolution graph; for most of the
remaining instances the peak size of the resolution graph increases by 20 % or more with
the maximum at 858 %.
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Fig. 7 Benefit of optimizations as reduction in the peak size of the resolution graph (number of vertices +
number of edges). The x-axis shows all optimizations enabled. The y-axis of (a)–(e) shows one optimization
disabled: (a) include premise of aug2 , (b) include premise 1 of BFS-loop-it-init-c and disable immediate

pruning of failed loop search iterations, (c) include premise 2 of BFS-loop-it-init-c , (d) include premise 2 of

BFS-loop-conclusion2 , (e) disable pruning of the resolution graph between loop searches. The y-axis of (f)
shows all optimizations disabled.

The impact in the remaining cases (Fig. 7 (a), (c), (d)) is negligible: for no instance the
peak size of the resolution graph increases by more than 6 %. However, in cases (c) and (d)
there is an instance where disabling the optimization leads to a larger UC. This occurs more
often also in case (b).

We note that in each family of categories application and random there are instances
for which the memory overhead of disabling all optimizations is larger than 1000 %. The
highest memory overhead is more than 6500 % for an instance of family alaska lift. The
effect on run time is less pronounced and uniform. When only instances are taken into
account that take at least 0.3 seconds to solve with all optimizations enabled, then the run
time overhead of disabling the optimizations is at most 40 %.

7.6 Extraction of Minimal UCs

Figure 8 shows the costs and benefits of applying deletion-based minimization (Sec. 5.1) to
(non-minimal) UCs obtained as described in Sec. 4.

Costs and benefits are somewhat varied. Minimal UCs can be computed for all instances
for which (non-minimal) UCs were obtained except for all 67 instances in family trp N12y.

A closer analysis shows that most instances with reductions of 30 % or more are in the
random category; some are also in family forobots. The largest reduction seen is 62 % from
469 to 177 nodes in the syntax tree of an instance from family trp N12x. 5 instances of the
forobots family are reduced between 30 % and 57 %. In the application category several
instances in each of the three families exhibit reductions in the range between 20 % and
28 %. On the other hand, for three out of six subfamilies in the alaska lift family, for one
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Fig. 8 Comparison of minimal UC extraction (y-axis) with UC extraction (x-axis). (a) and (b) show the
overhead incurred in terms of run time (in seconds) and memory (in MB). (c) shows the size reduction
obtained, where size is measured as the number of nodes in the syntax trees. The off-center diagonal in (a)
and (b) indicates where y = 2x.

out of three subfamilies in the anzu genbuf family, and for all families in the the crafted
category a minimal UC was already obtained without deletion-based minimization (for the
schuppan O2formula family the original instances are minimal UCs.).

The run time (resp. memory) overhead to obtain a minimal UC, except for instances of
the trp family that take 0.5 seconds or less to solve without deletion-based minimization, is
at most 428 % (resp. 87 %).

Hence, while based on our data there is no simple conclusion regarding the costs and
benefits of applying deletion-based minimization, one should keep in mind that minimizing
UCs trades increased processing time by a computer for reduced analysis time by a human
user, and that a minimal UC has less potential to confuse a user about how parts of a UC
contribute to its unsatisfiability.

7.7 UCs with Grouped Propositions

In Tab. 4 we show the effect of grouping propositions in UCs. The first column gives the
name of the family. The second column shows the maximum number of groups that the
set of occurrences of some proposition in the UC of a member of this benchmark family
was partitioned into. The number in parentheses shows the number of propositions (not
occurrences of propositions!) in that UC. The third column indicates the maximum number
of propositions whose occurrences in the UC were partitioned into two or more groups for a
member of this benchmark family. The number in parentheses is as for the previous column.

Our data show that instances from the application and random categories exhibit sig-
nificant potential for grouping propositions in UCs. The schuppan O1formula and schup-
pan phltl families in the crafted category provide no opportunity for grouping propositions.
Manual inspection of the groupings obtained in the crafted category proves them to be op-
timal.

(25) shows the UC with grouped propositions obtained from instance lift b l3 3 in fam-
ily alaska lift.18 We use superscripts 0,1,2 to distinguish groups of occurrences of the same
proposition. The example illustrates clearly that grouped propositions make it easier to see

18 The duplicate occurrence of ¬b f 1
1 in line 2 of (25) is an artifact resulting from the simplification of UCs

by removing conjunction with TRUE and disjunction with FALSE.
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Table 4 Effect of grouping propositions in UCs
family max. # groups per prop. in UC max. # prop. w. ≥ 2 groups per prop. in UC

(# prop. in UC) (# prop. in UC)
application

alaska lift 3 (9) 6 (18)
anzu genbuf 2 (4) 1 (4)
forobots 2 (4) 4 (18)

crafted
schuppan O1formula 1 (1) 0 (1)
schuppan O2formula 2 (3) 8 (17)
schuppan phltl 1 (2) 0 (2)

random
rozier random 4 (4) 2 (6)
trp 7 (27) 10 (27)

which occurrences of propositions interact.

(¬u0)∧ (¬up)∧ (¬b f 0
0 )∧ (¬b f 0

1 )∧
(G(b f 0

0 ∨b f 0
1 ∨X((¬b f 1

1 )∨¬b f 1
1 )))∧

(G(b f 1
0 ∨ (¬u1)∨¬Xb f 2

0 ))∧
(G(b f 1

1 ∨ (¬u1)∨¬Xb f 2
1 ))∧

(G(up∨b f 0
0 ∨b f 0

1 ∨¬X(b f 1
0 ∧¬b f 1

1 )))∧
(G((¬Xu1)→ u0))∧
XX(b f 2

0 ∨b f 2
1 )

(25)

In Fig. 9 we show the overhead that is incurred by the extraction of UCs with grouped
propositions over the extraction of UCs without grouped propositions.

The run time (resp. memory) overhead for instances that take at least 0.4 seconds to
solve without grouped propositions is at most 24 % (resp. 111 %). The memory overhead is
less than 30 % for more than 93 % of all instances.

The moderate run time and memory overhead seems justified given the potential benefits
of grouped propositions illustrated by the example above.

7.8 Comparison with Related Approaches

We now discuss TRP++ in comparison to PLTL-MUP [43] and procmine [3]. Remember that
both PLTL-MUP and procmine compute an unsatisfiable subset of a set of LTL formulas
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Fig. 9 Overhead of UC extraction with grouped propositions (y-axis) over UC extraction (x-axis) in terms
of run time (in seconds, (a)) and memory (in MB, (b)). The off-center diagonal indicates where y = 2x.
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rather than a UC in LTL as a syntax tree according to Def. 11. I.e., compared to our notion
of UC PLTL-MUP and procmine likely explore a smaller search space during minimization
(if enabled) and possibly produce a less fine-grained result.

TRP++, PLTL-MUP, and procmine differ in important respects such as preprocessing of
the input formula, algorithm used to obtain a UC, algorithm used to minimize a UC, pro-
gramming language used for the implementation, and — last but not least — the notion of
UC (syntax tree vs. subset of a set of formulas). Therefore, we regard the value of a de-
tailed discussion of the performance of TRP++ compared to PLTL-MUP and procmine as
somewhat questionable. We only state that, when using the options for TRP++ as explained
above and default options for PLTL-MUP and procmine, and minimization in TRP++ en-
abled iff it was enabled in its competitor (i) TRP++ mostly outperforms PLTL-MUP and
procmine in category application and in family trp of category random, (ii) in cate-
gory crafted TRP++ is outperformed by PLTL-MUP in one out of three families and by
procmine in most instances, and (iii) in family rozier random of category random nei-
ther tool clearly dominates an other. For plots please refer to App. B of [86], for data to
http://www.schuppan.de/viktor/actainformatica15/.

We finally illustrate the difference between our notion of UC and the notion of UC used
by PLTL-MUP and procmine on an example. (26) shows the UC produced by procmine for
instance liftf l1 2 from family alaska lift. The UC contains 6 out of 15 top level conjuncts.
The parts that are additionally replaced with TRUE by TRP++ due to our more fine-grained
notion of UC are marked blue boxed . For PLTL-MUP or procmine to obtain a similar result,
the user would have to rewrite the input. More such examples can be found in families
alaska lift, forobots, and rozier random (PLTL-MUP and procmine solve no instance in
the remaining family in category application, anzu genbuf).

f0,
¬up,
G( (u→ (( f0→ X f0)∧ ((X f0)→ f0)∧ ( f1→ X f1)∧ ((X f1)→ f1))) ∧

( f0→ X( f0∨ f1))∧
( f1→ X( f0∨ f1)) ),

G((( f0∧X f0)→ ( (up→ Xup) ∧ ((Xup)→ up)))∧
(( f1∧X f1)→ ((up→ Xup)∧ ((Xup)→ up))) ∧
(( f0∧X f1)→ up)∧
(( f1∧X f0)→¬up) ),

G( (b0→ F f0) ∧ (b1→ F f1)),
GFb1

(26)

All in all TRP++ produces more fine-grained UCs than PLTL-MUP and procmine while
remaining at least competitive in terms of run time and memory usage.

8 Conclusions

In this article we showed how to obtain UCs for LTL via temporal resolution, and we demon-
strated with an implementation in TRP++ that UC extraction can be performed efficiently.
The resulting UCs are significantly smaller than the corresponding input formulas and more
fine-grained than those produced by existing tools. In parallel work [84] this article has been
used as a basis to suggest enhancing UCs for LTL with information on when subformu-
las of a UC are relevant for unsatisfiability. The similarity of temporal resolution and some

http://www.schuppan.de/viktor/actainformatica15/VSchuppan-Acta-Informatica-2015-full.pdf#appendix.B
http://www.schuppan.de/viktor/actainformatica15/
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BDD-based algorithms at a high level and work on resolution with BDDs ([59]) suggests to
explore whether computation of UCs is feasible for BDD-based algorithms. Another direc-
tion for transfer of our results is resolution-based computation of unrealizable cores [72].
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43. Goré R, Huang J, Sergeant T, Thomson J (2013) Finding Minimal Un-
satisfiable Subsets in Linear Temporal Logic using BDDs. Available from
http://www.timsergeant.com/files/pltlmup/gore_huang_sergeant_

thomson_mus_pltl.pdf

44. Gurfinkel A, Chechik M (2004) How Vacuous Is Vacuous? In: Jensen K, Podelski A
(eds) TACAS, Springer, LNCS, vol 2988, pp 451–466

45. Halpern J, Reif J (1983) The Propositional Dynamic Logic of Deterministic, Well-
Structured Programs. Theor Comput Sci 27:127–165

46. Hantry F, Hacid M (2011) Handling Conflicts in Depth-First Search for LTL Tableau
to Debug Compliance Based Languages. In: Pimentel E, Valero V (eds) FLACOS,
EPTCS, vol 68, pp 39–53

47. Hantry F, Saı̈s L, Hacid M (2012) On the complexity of computing minimal unsatis-
fiable LTL formulas. Electronic Colloquium on Computational Complexity (ECCC)
19(69)

48. Harding A (2005) Symbolic Strategy Synthesis For Games With LTL Winning Condi-
tions. PhD thesis, University of Birmingham

49. Heuerding A, Jäger G, Schwendimann S, Seyfried M (1995) Propositional Logics on
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