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LTL is frequently used to express specifications in many domains such as embedded systems or
business processes. Witnesses can help to understand why an LTL specification is satisfiable, and
a number of approaches exist to make understanding a witness easier. In the case of unsatisfiable
specifications unsatisfiable cores (UCs), i.e., parts of an unsatisfiable formula that are themselves
unsatisfiable, are a well established means for debugging. However, little work has been done to help
understanding a UC of an unsatisfiable LTL formula. In this paper we suggest to enhance a UC of an
unsatisfiable LTL formula with additional information about the time points at which the subformulas
of the UC are relevant for unsatisfiability. For example, in (Gp)∧ (X¬p) the first occurrence of p
is really only “relevant” for unsatisfiability at time point 1 (time starts at time point 0). We present
a method to extract such information from the resolution graph of a temporal resolution proof of
unsatisfiability of an LTL formula. We implement our method in TRP++, and we experimentally
evaluate it. Source code of our tool is available.

1 Introduction

Motivation LTL (e.g., [Pnu77,Eme90]) and its relatives are important specification languages for re-
active systems (e.g., [EF06]) and for business processes (e.g., [PA06]). Experience in verification (e.g.,
[Bee+01,Kup06]) and in synthesis (e.g., [Blo+07]) has lead to specifications themselves becoming ob-
jects of analysis. Typically, a specification is expected to be satisfiable. If it turns out to be unsatisfiable,
finding a reason for unsatisfiability can help with the ensuing debugging. Given the sizes of specifications
of real world systems (e.g., [Chi+10]) automated support for determining a reason for unsatisfiability of a
specification is crucial. Frequently, such reason for unsatisfiability is taken to be a part of the unsatisfiable
specification that is by itself unsatisfiable (e.g., [Sch12b,Bak+93,CD91]); this is called an unsatisfiable
core (UC) (e.g., [Sch12b,GN03,ZM03b,Hoo99]).

Less simplistic ways to examine an LTL specification φ exist [Pil+06], and understanding their results
also benefits from availability of UCs. First, one can ask whether a certain scenario φ ′, given as an LTL
formula, is permitted by φ . That is the case iff φ ∧ φ ′ is satisfiable. Second, one can check whether φ

ensures a certain LTL property φ ′′. φ ′′ holds in φ iff φ ∧¬φ ′′ is unsatisfiable. In the first case, if the
scenario turns out not to be permitted by the specification, a UC can help to understand which parts of
the specification and the scenario are responsible for that. In the second case a UC can show which
parts of the specification imply the property. Moreover, if there are parts of the property that are not
part of the UC, then those parts of the property could be strengthened without invalidating the property
in the specification; i.e., the property is vacuously satisfied (e.g., [Bee+01,KV03,Arm+03,GC04,Fis+08,
Kup06]).

Trying to help users to understand counterexamples in verification, which are essentially witnesses
to a satisfiable formula, is a well established research topic (see, e.g., [Bee+09] for some references). In
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particular, it is common to add information to a counterexample on which parts of a counterexample are
relevant at which points in time (e.g., [RS04,Bee+09]). According to [Bee+09] such explanations are
an integral part of every counterexample trace in IBM’s verification platform RuleBase PE. Checks for
vacuous specifications, which are closely related to UCs [Sch12b], are an important feature of industrial
hardware verification tools (see, e.g., [Bee+01,Arm+03]). In the academic world UCs are an important
part of design methods for embedded systems (e.g., [Pil+06]) as well as for business processes (e.g.,
[Awa+12]). Despite this relevance of UCs efforts to provide additional information in the context of UCs
or vacuity have remained isolated (e.g., [Sim+10]).

Example In this paper we suggest to enhance UCs for LTL with information on the time points at
which its subformulas are relevant for unsatisfiability. As illustration we discuss the example from the
abstract in more detail, shown in (1) again.

(Gp)∧ (X¬p) (1)

When (1) is evaluated on some word π according to standard semantics of LTL (see Sec. 2), (1) and both
of its conjuncts, Gp and X¬p, are evaluated at time point 0 (time starts at time point 0), the operand of
the G operator, p, is evaluated at all time points in N, and the operand of the X operator, ¬p, as well as
its operand, p, are evaluated at time point 1. We can include this information into (1) by writing the set
of time points at which an operand is evaluated directly below the corresponding operator. Note that in
this scheme there is no place for the set of time points at which (1) itself is evaluated; however, (1) (as
any LTL formula) will always be evaluated only at time point 0, so this need not be spelled out explicitly.
We then obtain (2).

(G
N

p) ∧
{0},{0}

( X
{1}
¬
{1}

p) (2)

It is easy to see that (1) evaluates to 0 on any word π , i.e., it is unsatisfiable. The reason for this is that at
time point 1 p would have to be 1 in the first conjunct Gp and 0 in the second conjunct X¬p. Notice that
for this to happen the operand of Gp, p, needs to be evaluated only at time point 1; it is immaterial at any
other time point. (2) can be enhanced with this information by replacingN below G with {1}, obtaining
(3). (3) can be seen as a UC of (1).

( G
{1}

p) ∧
{0},{0}

( X
{1}
¬
{1}

p) (3)

Approach We obtain the desired information as follows. We use a temporal resolution-based [Fis91,
FDP01] solver to determine unsatisfiability of a given LTL formula. During the execution of the solver
we construct a resolution graph [Sch12a]. In the resolution graph we distinguish between edges where a
premise is time-shifted 1 step into the future with respect to the conclusion and others where this is not
the case. An example for an inference that involves such a time step is concluding G(p) from premises
G(p∨X¬q) and G(q): the second premise G(q) is implicitly converted to G(Xq) to perform the infer-
ence. I.e., the resulting edge from the second premise G(q) to the conclusion G(p) involves a time step
of 1, while this is not the case for the edge from the first premise G(p∨X¬q) to the conclusion. To
determine the sets of time points at which a clause c in an unsatisfiable set of SNF clauses (temporal
resolution works on a clausal normal form called SNF [Fis91,FN92,FDP01]) is relevant for unsatisfia-
bility we fix time point 0 as the time point at which the contradiction 2, which concludes the proof, is
happening. Then we count the number of time-shifts that occur on paths from c to 2 in the resolution
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graph: c is relevant for unsatisfiability at time point i iff there exists a path from c to 2 in the resolu-
tion graph that traverses exactly i edges involving a time step of 1. Note that the resolution graph may
contain loops. Therefore, to actually count the number of time-shifts on all possible paths from some
clause c to the contradiction 2, we regard the reversed resolution graph as a nondeterministic finite au-
tomaton over the language {0,1} with initial state 2 and final state c. The desired information is then
simply the Parikh image (e.g., [Sal73]) of the letter 1 in the language given by the automaton. Parikh’s
theorem [Par66] implies that the resulting sets of time points are semilinear. To compute the Parikh
images we use algorithms by Gawrychowski [Gaw11] or Sawa [Saw13]. For |C| input SNF clauses and
a resolution graph with |V ′| vertices backward reachable from 2 the information can be computed in
time O(|V ′|3 + |V ′|2 · |C|). Our experimental evaluation shows that the resulting overhead compared to
extraction of UCs without sets of time points is acceptable in practice.

Contributions In this paper we make the following contributions. (i) We suggest to enhance UCs for
LTL with information on the time points at which the subformulas of a UC are relevant for unsatisfia-
bility, leading to a more fine-grained notion of UCs for LTL than [Sch12b]. (ii) We propose a method to
obtain that information from a temporal resolution proof of unsatisfiability of an LTL formula. (iii) We
implement our method in TRP++, and we experimentally evaluate it. We are not aware of any other tool
that performs extraction of UCs for propositional LTL at that level of granularity. We make the source
code of our solver available. Conceptually, under the frequently legitimate assumption that a system
description can be translated into an LTL formula, our results extend to vacuity for LTL.

(Not) Just Debugging Besides debugging as outlined above UCs are also used for avoiding the ex-
ploration of parts of a search space that can be known not to contain a solution for reasons “equivalent”
to the reasons for previous failures (e.g., [Cla+03,Cim+07]). While our results might also benefit that
application, we focus on debugging.

Temporal Resolution as a Basis Temporal resolution [Fis91,FDP01] lends itself as a basis for enhanc-
ing UCs for LTL with information on temporal relevance for two reasons. First, the temporal resolution-
based solver TRP++ [HK03,HK04,trp++] proved to be competitive in a recent evaluation of solvers for
LTL satisfiability, in particular on unsatisfiable instances (see pp. 51–55 of the full version of [SD11]).
Second, a temporal resolution proof naturally induces a resolution graph [Sch12a], which provides a
clean framework for extracting information from the proof. Note, that while the BDD-based solver
NuSMV [Cim+02] also performed well on unsatisfiable instances in [SD11], the BDD layer makes ex-
traction of information from the proof more involved. On the other hand, the tableau-based solvers LWB
[Heu+95] and pltl [pltl] provide access to a proof of unsatisfiability comparable to temporal resolution,
yet tended to perform not as good on unsatisfiable instances in [SD11].

Notion of Relevance In this paper we use the following notion of relevance. Assume an LTL formula
φ and a temporal resolution proof of its unsatisfiability. Remove those parts of the proof that did not
contribute to proving unsatisfiability. Consider what is left to be relevant for unsatisfiability; this includes
not only which subformulas of φ are used but also the time points at which they are used. Clearly, this
notion of relevance may not lead to results of minimal or minimum relevance: the fact that some part
of φ is used at some time point in a specific proof of the unsatisfiability of φ does not mean that all
such proofs will use that part of φ at that time point. For other notions of relevance see, e.g., [RS04,
Bee+09]. The reasons for using our notion of relevance are pragmatic. First, this notion of relevance
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can be computed with little overhead from a proof of unsatisfiability, which is assumed to be carried out
anyway. Second, the result of our notion of relevance can serve as an already reduced input to some of
the other notions (e.g., [Awa+12,ZM03a,CD91]).

Related Work Simmonds et al. [Sim+10] use SAT-based bounded model checking (e.g., [Bie+99,
Bie09]) for vacuity detection. They indicate which time points are relevant for showing that a variable is
non-vacuous. They only consider k-step vacuity, i.e., taking into account bounded model checking runs
up to a bound k, and leave the problem of removing the bound k open. [Sch12b] mentions indicating time
points at which subformulas of a UC in LTL are relevant for unsatisfiability. The idea is not formalized.
It first appears in the context of a UC extraction algorithm that is complete only for a strict subset of
LTL. Later [Sch12b] proposes example (4) and conjectures that sets of time points can be obtained from
a tableau method and that these sets are semilinear. Some work [RS04,Bee+09] determines the time
points at which propositions in witnesses of satisfiable LTL formulas are relevant for satisfiability. For
more general related work on UC extraction see [Sch12a,Sch12b].

Structure of the Paper This paper builds on a fair amount of previous work: we use temporal reso-
lution as implemented in TRP++ [FDP01,HK03,HK04,trp++] and its extension to extract UCs [Sch12a].
To make this paper self-contained we provide a concise description of both. However, to allow sufficient
room for the contributions of this paper we have to limit the amount of explanation for previous work.
Temporal resolution has been developed since the early 1990s [Fis91], and we refer to [FDP01] for a
general overview, to [Dix98,Dix97,Dix96,Dix95] for details on loop search, and to [HK03,HK04,trp++]
for the implementation in TRP++. In [Sch12a] we provide some intuition on temporal resolution with a
slant towards BDD-based symbolic model checking (e.g., [Bur+92,CGP01]). Finally, we refer to Sec. 4
for an example of an execution of the temporal resolution algorithm and the corresponding extraction of
UCs.

Section 2 starts with preliminaries. Temporal resolution and its clausal normal form SNF are intro-
duced in Sec. 3. In Sec. 4 we restate the construction of a resolution graph and its use to obtain a UC
from [Sch12a]. This is extended to compute time points at which subformulas are relevant for unsatis-
fiability in Sec. 5, 6. A number of examples are spread throughout the paper; in Sec. 7 we provide an
example close to a real world situation. We discuss our implementation and experimental evaluation in
Sec. 8. Section 9 concludes. Due to space constraints some proofs are sketched or omitted in the main
part; these can be found in the appendices. For our implementation, examples, and log files see [www].

2 Preliminaries

LetN be the naturals, and let I ⊆N be a set of naturals. I is linear iff there exist two naturals p (period)
and o (offset) such that I = p·N+o. I is semilinear iff it is the union of finitely many linear sets.

Let Σ be a finite alphabet, σ ∈ Σ a letter in Σ, L ⊆ Σ∗ a language over Σ, and w ∈ L a word in L.
Define a function from words and letters to naturals Ψ : Σ∗×Σ→N,(w,σ) 7→m where m is the number
of occurrences of σ in w. Ψ is called Parikh mapping and Ψ(w,σ) is called the Parikh image of σ in
w. The Parikh image of a set of words W is defined in the natural way: Ψ(W,σ) = {Ψ(w,σ) | w ∈W}.
Parikh’s theorem [Par66] states that for every context-free language L, for every letter σ , the Parikh
image Ψ(L,σ) is semilinear. See also [Sal73].

We use a standard version of LTL, see, e.g., [Eme90]. Let B be the set of Booleans, and let AP
be a finite set of atomic propositions. The set of LTL formulas is constructed inductively as follows.
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(π, i) |= 1, 6|= 0 (π, i) |= p ⇔ p ∈ π[i]
(π, i) |= ¬ψ ⇔ (π, i) 6|= ψ (π, i) |= Xψ ⇔ (π, i+1) |= ψ

(π, i) |= ψ ∨ψ ′ ⇔ (π, i) |= ψ or (π, i) |= ψ ′ (π, i) |= ψ ∧ψ ′ ⇔ (π, i) |= ψ and (π, i) |= ψ ′

(π, i) |= ψUψ ′ ⇔ ∃i′ ≥ i . ((π, i′) |= ψ ′ ∧∀i≤ i′′ < i′ . (π, i′′) |= ψ) (π, i) |= ψRψ ′ ⇔ ∀i′ ≥ i . ((π, i′) |= ψ ′ ∨∃i≤ i′′ < i′ . (π, i′′) |= ψ)
(π, i) |= Fψ ⇔ ∃i′ ≥ i . (π, i′) |= ψ (π, i) |= Gψ ⇔ ∀i′ ≥ i . (π, i′) |= ψ

Table 1: Semantics of LTL. π is a word in (2AP)ω , i is a time point in N. π satisfies φ iff (π,0) |= φ .

rule premise 1 part. premise 2 part. conclusion part. p.1 – c t.s. 1 p.2 – c t.s. 2 vt. c

saturation

init-ii (P∨ l) M (¬l∨Q) M (P∨Q) M 4 6 4 6 4

init-in (P∨ l) M (G(¬l∨Q)) M (P∨Q) M 4 6 4 6 4

step-nn (G(P∨ l)) M (G(¬l∨Q)) M (G(P∨Q)) M 4 6 4 6 4

step-nx (G(P∨ l)) M (G((Q)∨ (X(¬l∨R)))) M (G((Q)∨ (X(P∨R)))) M 4 4 4 6 4

step-xx (G((P)∨ (X(Q∨ l)))) ML (G((R)∨ (X(¬l∨S)))) ML (G((P∨R)∨ (X(Q∨S)))) ML 4 6 4 6 4

augmentation

aug1 (G((P)∨ (F(l)))) M (G(P∨ l∨wl)) M 4 6 — — 4

aug2 (G((P)∨ (F(l)))) M (G((¬wl)∨ (X(l∨wl)))) M 6 6 — — 4

BFS loop search

BFS-loop-it-init-x c≡ (G((P)∨ (X(Q)))) with |Q|> 0 M c L 4 6 — — 4

BFS-loop-it-init-n (G(P)) M (G((0)∨ (X(P)))) L 4 4 — — 4

BFS-loop-it-init-c (G(P)) L′ (G((Q)∨ (F(l)))) M (G((0)∨ (X(P∨ l)))) L 6 6 6 6 4

BFS-loop-it-sub c≡(G(P)) with c→ (G(Q)) L (G((0)∨ (X(Q∨ l)))) generated by BFS-loop-it-init-c L 4 4 — — 6

BFS-loop-conclusion1 (G(P)) L (G((Q)∨ (F(l)))) M (G(P∨Q∨ l)) M 4 6 4 6 4

BFS-loop-conclusion2 (G(P)) L (G((Q)∨ (F(l)))) M (G((¬wl)∨ (X(P∨ l)))) M 4 4 6 6 4

Table 2: Production rules in TRP++. Let P≡
∨

i=1...n pi, Q≡
∨

i=1...n′ qi, R≡
∨

i=1...n′′ ri, S≡
∨

i=1...n′′′ si.

The Boolean constants 0 (false), 1 (true) ∈ B and any atomic proposition p ∈ AP are LTL formulas. If
ψ , ψ ′ are LTL formulas, so are ¬ψ (not), ψ ∨ψ ′ (or), ψ ∧ψ ′ (and), Xψ (next time), ψUψ ′ (until),
ψRψ ′ (releases), Fψ (finally), and Gψ (globally). We use ψ → ψ ′ (implies) as an abbreviation for
¬ψ∨ψ ′, ψ↔ψ ′ (equivalent) for (ψ → ψ ′)∧(ψ ′→ ψ), and ψWψ (weak until) for (ψUψ ′)∨Gψ . For
the semantics of LTL see Tab. 1. An occurrence of a subformula ψ of an LTL formula φ has positive
polarity (+) if it appears under an even number of negations in φ and negative polarity (−) otherwise.

3 Temporal Resolution (TR) in TRP++

TR works on formulas in a clausal normal form called separated normal form (SNF) [Fis91,FN92,
FDP01]. For any atomic proposition p ∈ AP p and ¬p are literals. Let p1, . . . ,pn, q1, . . . ,qn′ ,
l with 0 ≤ n,n′ be literals such that p1, . . . ,pn and q1, . . . ,qn′ are pairwise different. Then
(i) (p1∨ . . .∨pn) is an initial clause; (ii) (G((p1 ∨ . . .∨pn)∨ (X(q1∨ . . .∨qn′)))) is a global clause;
and (iii) (G((p1∨ . . .∨pn)∨ (F(l)))) is an eventuality clause. l is called an eventuality literal. As usual
an empty disjunction (resp. conjunction) stands for 0 (resp. 1). () or (G()), denoted 2, stand for 0 or
G(0) and are called empty clause. The set of all SNF clauses is denoted C. Let c1, . . . ,cn with 0≤ n be
SNF clauses. Then

∧
1≤i≤n ci is an LTL formula in SNF. Every LTL formula φ can be transformed into

an equisatisfiable formula φ ′ in SNF [Fis91,FN92,FDP01].
We now describe TR [Fis91,FDP01] as implemented in TRP++ [HK03,HK04,trp++]. The production

rules of TRP++ are shown in Tab. 2. The first column assigns a name to a production rule. The second
and fourth columns list the premises. The sixth column gives the conclusion. Columns 3, 5, and 7 are
described below. Columns 8–12 become relevant only in later sections.

Algorithm 1 provides a high level view of TR in TRP++ [HK04]. The algorithm takes a set of starting
clauses C in SNF as input. It returns unsat if C is found to be unsatisfiable (by deriving 2) and sat
otherwise. Resolution between two initial or two global clauses or between an initial and a global clause
is performed by a simple extension of propositional resolution (e.g., [Rob65,FM09,BG01]). The corre-
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Algorithm 1: LTL satisfiability checking via TR in TRP++.

Input: A set of SNF clauses C. Output: Unsat if C is unsatisfiable; sat otherwise.

M←C; if 2 ∈M then return unsat;1
saturate(M); if 2 ∈M then return unsat;2
augment(M);3
saturate(M); if 2 ∈M then return unsat;4
M′← /0;5
while M′ 6= M do6

M′←M;7
for c ∈C . c is an eventuality clause do8

C′←{2};9
repeat10

initialize-BFS-loop-search-iteration(M, c, C′, L);11
saturate-step-xx(L);12
C′←{c′ ∈ L | c′ has empty X part};13
C′′←{(G(Q)) | (G((0)∨ (X(Q∨ l)))) ∈ L generated by BFS-loop-it-init-c };14
f ound← subsumes(C′,C′′);15

until found or C′ = /0 ;16
if found then17

derive-BFS-loop-search-conclusions(c, C′, M);18
saturate(M); if 2 ∈M then return unsat;19

return sat;20

sponding production rules are listed under saturation in Tab. 2. Given a set of SNF clauses C we say that
one saturates C if one applies these production rules to clauses in C until no new clauses are generated.
Resolution between a set of initial and global clauses and an eventuality clause with eventuality literal
l requires finding a set of global clauses that allows to infer conditions under which XG¬l holds. Such
a set of clauses is called a loop in ¬l. Loop search involves all production rules in Tab. 2 except init-ii ,
init-in , step-nn , and step-nx .

In line 1 Alg. 1 initializes M with the set of starting clauses and terminates iff one of these is the
empty clause. Then, in line 2, it saturates M (terminating iff the empty clause is generated). In line
3 it augments M by applying production rule aug1 to each eventuality clause in M and aug2 once per
eventuality literal in M, where wl is a fresh proposition. This is followed by another round of saturation
in line 4. From now on Alg. 1 alternates between searching for a loop for some eventuality clause c
(lines 9–18) and saturating M if loop search has generated new clauses (line 19). It terminates if either
the empty clause was derived (line 19) or if no new clauses were generated (line 20).

Loop search for some eventuality clause c may take several iterations (lines 11–15). Each loop
search iteration uses saturation restricted to step-xx as a subroutine (line 12). Therefore, each loop search
iteration has its own set of clauses L in which it works. We call M and L partitions. Columns 3, 5, and 7
in Tab. 2 indicate whether a premise (resp. conclusion) of a production rule is taken from (resp. put into)
the main partition (M), the loop partition of the current loop search iteration (L), the loop partition of
the previous loop search iteration (L′), or either of M or L as long as premises and conclusion are in the
same partition (ML). In line 11 partition L of a loop search iteration is initialized by applying production
rule BFS-loop-it-init-x once for each global clause with non-empty X part in M, rule BFS-loop-it-init-n once
for each global clause with empty X part in M, and rule BFS-loop-it-init-c once for each global clause with
empty X part in the partition of the previous loop search iteration L′. Notice that by construction at this
point L contains only global clauses with non-empty X part. Then L is saturated using only rule step-xx

(line 12). A loop has been found iff each global clause with empty X part that was derived in the previous
loop search iteration is subsumed by at least one global clause with empty X part that was derived in the
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current loop search iteration (lines 13–15). Subsumption between a pair of clauses corresponds to an
instance of production rule BFS-loop-it-sub ; note, though, that this rule does not produce a new clause
but records a relation between two clauses to be used later for extraction of a UC. Loop search for c
terminates, if either a loop has been found or no clauses with empty X part were derived (line 16). If
a loop has been found, rules BFS-loop-conclusion1 and BFS-loop-conclusion2 are applied once to each global
clause with empty X part that was derived in the current loop search iteration (line 18) to obtain the loop
search conclusions for the main partition.

4 UC Extraction via TR

In this section we restate the main definitions from [Sch12a] that show how to construct UCs via TR.
In Sec. 6 we extend this construction to include information on when parts of a UC are relevant for
unsatisfiability. Then we present an example for extraction of a UC in SNF, which is extended with sets
of time points in Sec. 6.

Extraction of UCs in SNF Given an unsatisfiable set of SNF clauses C we would first like to obtain
a subset of C, Cuc, that is by itself unsatisfiable from an execution of Alg. 1. The general idea of the
construction is unsurprising in that during the execution of Alg. 1 a resolution graph is built that records
which clauses were used to generate other clauses (Def. 1). Then the resolution graph is traversed
backwards from the empty clause to find the subset of C that was actually used to prove unsatisfiability
(Def. 2). The main concern of Def. 1, 2, and their proof of correctness in Thm. 1 (see [Sch12a]) is
therefore that certain parts of the TR proof do not need to be taken into account when determining Cuc.
Definition 1 (Resolution Graph). [Sch12a] A resolution graph G is a directed graph consisting of 1. a set
of vertices V , 2. a set of directed edges E ⊆V ×V , 3. a labeling of vertices with SNF clauses LV : V →C,
and 4. a partitioning QV of the set of vertices V into one main partition MV and one partition LV

i for
each BFS loop search iteration: QV : V = MV ]LV

0 ] . . .]LV
n .1 Let C be a set of SNF clauses. During

an execution of Alg. 1 with input C a resolution graph G is constructed as follows.
In line 1 G is initialized: 1. V contains one vertex v per clause c in C: V = {vc | c ∈ C}, 2. E is

empty: E = /0, 3. each vertex is labeled with the corresponding clause: LV : V → C,LV (vc) = c, and
4. the partitioning QV contains only the main partition MV , which contains all vertices: QV : MV =V .

Whenever a new BFS loop search iteration is entered (line 11), a new partition LV
i is created and

added to QV . For each application of a production rule from Tab. 2 that either generates a new clause
in partition M or L or is the first application of rule BFS-loop-it-sub to clause c′′ in C′′ in line 15: 1. if
column 12 (vt. c) of Tab. 2 contains 4, then a new vertex v is created for the conclusion c (which is a
new clause), labeled with c, and put into partition MV or LV

i ; 2. if column 8 (p.1 – c) (resp. column 10
(p.2 – c)) contains 4, then an edge is created from the vertex labeled with premise 1 (resp. premise 2) in
partition MV or LV

i to the vertex labeled with the conclusion in partition MV or LV
i .

Definition 2 (UC in SNF). [Sch12a] Let C be a set of SNF clauses to which Alg. 1 has been applied
and shown unsatisfiability, let G be the resolution graph, and let v2 be the (unique) vertex in the main
partition MV of the resolution graph G labeled with the empty clause 2. Let G′ be the smallest subgraph
of G that contains v2 and all vertices in G (and the corresponding edges) that are backward reachable
from v2. The UC of C in SNF, Cuc, is the subset of C such that there exists a vertex v in the subgraph G′,
labeled with c ∈C, and contained in the main partition MV of G: Cuc = {c ∈C | ∃v ∈VG′ . LV (v) = c∧
v ∈MV}.

1] denotes disjoint union of sets.
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Subf. Prop. SNF Clauses (positive polarity occurrences) SNF Clauses (negative polarity occurrences)

1/0/p 1/0/p — —
¬ψ x¬ψ (G(x¬ψ → (¬ xψ ))) (G((¬x¬ψ )→ xψ ))

ψ ∧ψ ′ x
ψ∧ψ ′ (G(x

ψ∧ψ ′ → xψ )), (G(x
ψ∧ψ ′ → x

ψ ′ )) (G((¬x
ψ∧ψ ′ )→ ((¬ xψ )∨ (¬ x

ψ ′ ))))

ψ ∨ψ ′ x
ψ∨ψ ′ (G(x

ψ∨ψ ′ → ( xψ ∨ x
ψ ′ ))) (G((¬x

ψ∨ψ ′ )→ (¬ xψ ))), (G((¬x
ψ∨ψ ′ )→ (¬ x

ψ ′ )))

Xψ xXψ (G(xXψ → (X xψ ))) (G((¬xXψ )→ (X¬ xψ )))

Gψ xGψ (G(xGψ → (XxGψ ))), (G(xGψ → xψ )) (G((¬xGψ )→ (F¬ xψ )))

Fψ xFψ (G(xFψ → (F xψ ))) (G((¬xFψ )→ (X¬xFψ ))), (G((¬xFψ )→ (¬ xψ )))

ψUψ ′ x
ψUψ ′ (G(x

ψUψ ′ → ( x
ψ ′ ∨ xψ ))), (G(x

ψUψ ′ → ( x
ψ ′ ∨ (Xx

ψUψ ′ )))), (G((¬x
ψUψ ′ )→ (¬ x

ψ ′ ))), (G((¬x
ψUψ ′ )→ ((¬ xψ )∨ (X¬x

ψUψ ′ ))))

(G(x
ψUψ ′ → (F x

ψ ′ )))

ψRψ ′ x
ψRψ ′ (G(x

ψRψ ′ → x
ψ ′ )), (G(x

ψRψ ′ → ( xψ ∨ (Xx
ψRψ ′ )))) (G((¬x

ψRψ ′ )→ ((¬ x
ψ ′ )∨ (¬ xψ )))), (G((¬x

ψRψ ′ )→ ((¬ x
ψ ′ )∨ (X¬x

ψRψ ′ )))),

(G((¬x
ψRψ ′ )→ (F¬ x

ψ ′ )))

Table 3: Translation from LTL to SNF.

Theorem 1 (Unsatisfiability of UC in SNF). [Sch12a] Let C be a set of SNF clauses to which Alg. 1 has
been applied and shown unsatisfiability, and let Cuc be the UC of C in SNF. Then Cuc is unsatisfiable.

From LTL to SNF and Back We now lift the extraction of UCs from SNF to LTL by restating the
translation from LTL to SNF and the mapping from a UC in SNF back to LTL from [Sch12a].

Definition 3 (Translation from LTL to SNF). [Sch12a] Let φ be an LTL formula over atomic propositions
AP, and let X = {x,x′, . . .} be a set of fresh atomic propositions not in AP. Assign each occurrence of
a subformula ψ in φ a Boolean value or a proposition according to col. 2 of Tab. 3, which is used to
reference ψ in the SNF clauses for its superformula. Moreover, assign each occurrence of ψ a set of SNF
clauses according to col. 3 or 4 of Tab. 3. Let SNFaux(φ) be the set of all SNF clauses obtained from φ

that way. Then the SNF of φ is defined as SNF(φ)≡ xφ ∧
∧

c∈SNFaux(φ) c.

Definition 4 (Mapping a UC in SNF to a UC in LTL). [Sch12a] Let φ be an unsatisfiable LTL formula,
let SNF(φ) be its SNF, and let Cuc be the UC of SNF(φ) in SNF. Then the UC of φ in LTL, φ uc, is
obtained as follows. For each positive (resp. negative) polarity occurrence of a proper subformula ψ

of φ with proposition xψ according to Tab. 3, replace ψ in φ with 1 (resp. 0) iff Cuc contains no clause
with an occurrence of proposition xψ that is marked blue boxed in Tab. 3. (We are sloppy in that we
“replace” subformulas of replaced subformulas, while in effect they simply vanish.)

Theorem 2 (Unsatisfiability of UC in LTL). [Sch12a] Let φ be an unsatisfiable LTL formula, and let
φ uc be the UC of φ in LTL. Then φ uc is unsatisfiable.

Example In Fig. 1 we show an example of an execution of the TR algorithm with the correspond-
ing resolution graph and UC extraction in SNF. The set of SNF clauses C to be solved contains a,
G((¬a)∨Xb), G((¬b)∨Xa), G((¬a)∨¬c), G((¬c)∨X¬a), and G(Fc). The first three clauses a,
G((¬a)∨Xb), and G((¬b)∨Xa) force a to be 1 at even time points. This is contradicted by the last
three clauses G((¬a)∨¬c), G((¬c)∨X¬a), and G(Fc): they require that a eventually becomes 0 for
two consecutive time points. Clearly, C is unsatisfiable. This example is based on the same idea as (4) in
Sec. 5. However, the SNF obtained by our translation from LTL to SNF for (4) is larger than C, with the
corresponding figure harder to fit on one page.

In Fig. 1 the TR algorithm proceeds from bottom to top. Clauses are connected with edges according
to cols. 8 and 10 of Tab. 2 and labeled with the corresponding production rules, where “BFS-loop” is
abbreviated to “loop”, “init” to “i”, and “conclusion” to “conc”. In the first row from the bottom (in the
light red shaded rectangle) are the starting clauses from C. In the top right corner is the empty clause
2 signaling unsatisfiability of C. Row 2 contains the clauses resulting from the first round of saturation



V. Schuppan 9

(line 2 in Alg. 1) and from augmentation (line 3).2 The second round of saturation (line 4) produces no
new clauses. The dark green shaded rectangle is the partition for the first iteration of a loop search for a
loop in ¬c. Row 3 contains the result of loop search initialization (line 11) and row 4 the clauses obtained
by restricted saturation (line 12). As none of the clauses in row 4 subsumes 2, this iteration terminates
without having found a loop. The second loop search iteration is in the light green shaded rectangle.
Again row 5 contains the result of loop search initialization and row 6 the clauses obtained by restricted
saturation. This time the subsumption test is successful (lines 13–15), and row 7 shows the loop search
conclusions (line 18). The last row finally contains the derivation of 2 by saturation (line 19).

The clauses that are backward reachable from 2 are shown in blue with blue, thick, dashed boxes.
The corresponding edges are thick, blue or red, and dashed or dotted. The resulting UC comprises all
clauses in C (note that this example shows the mechanism rather than the benefits of extracting UCs).

The distinction between blue, dashed and red, dotted edges as well as the sets of time points shown
in black boxes are needed when sets of time points are added in Sec. 6. Please ignore those for now.

5 LTL with Sets of Time Points (LTLp)

In this section we propose a notation that allows to integrate more detailed information from a resolution
proof of the unsatisfiability of some LTL formula φ into the UC φ uc. The information we are interested
in are the time points at which a part of an LTL formula is needed to prove unsatisfiability. Hence, we
assign to each subformula a set of time points that indicates at which time points that subformula will be
evaluated; at other time points the subformula is considered to be 1 or 0 depending on polarity. Note that
this can be seen as an extension of a notion of UC in [Sch12b,KV03], where subformulas are replaced
with 1 or 0 depending on polarity. We wish to emphasize that it is not our goal to introduce a “new
logic”, but merely to suggest a notation with well defined semantics that allows to smoothly integrate
such information.

Definition 5 (LTLp Syntax). The set of LTLp formulas is constructed inductively as follows. The
Boolean constants 0 (false), 1 (true) ∈ B and any atomic proposition p ∈ AP are LTLp formulas. If
I, I′ ⊆ N are sets of time points and if τ , τ ′ are LTLp formulas, so are ¬

I
τ (not), τ ∨

I,I′
τ ′ (or), τ ∧

I,I′
τ ′

(and), X
I

τ (next time), τ U
I,I′

τ ′ (until), τ R
I,I′

τ ′ (releases), F
I
τ (finally), and G

I
τ (globally). τ→

I,I′
τ ′ (implies)

abbreviates ¬
I
τ ∨

I,I′
τ ′.

We now recursively define the semantics of an LTLp formula at time points i ∈ N of a word π ∈
(2AP)ω . Note that the semantics depends on the polarity of the occurrence of a subformula. The intuition
for the semantics is that if a time point i is not contained in a set I, then the corresponding operand at that
time point cannot be used to establish unsatisfiability.

Definition 6 (LTLp Semantics). The semantics of LTLp is given in Tab. 4. π satisfies a formula φ iff the
formula holds at the beginning of π: π |= φ ⇔ (π,0) |= φ .

Our definition leaves the top level formula without a set of time points. This is justified, as the only
useful value there is {0}; it is required for satisfaction of an LTLp formula in Def. 6. In Remark 1 we
state some properties of LTLp.

2While it may seem that some clauses are not considered for loop initialization or saturation, this is due to either subsumption
of one clause by another (e.g., G((¬wc)∨X(c∨wc)) by G(c∨wc)) or the fact that TRP++ uses ordered resolution (e.g., a with
G((¬a)∨¬c); [HK03,BG01]). Both are issues of completeness of TR and, therefore, not discussed in this paper.
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a
{0}

G((¬a)∨¬c)

2·N

G((¬b)∨Xa)

2·N+1

G((¬c)∨X¬a)

2·N+1

G((¬a)∨Xb)

2·N

G(Fc)

{0}

G((¬b)∨¬c) 2·N+1 G((¬wc)∨X(c∨wc)) G(c∨wc)

G(X((¬a)∨¬c))

G(Xc)

G((¬b)∨Xa)

G(X((¬b)∨¬c))

G((¬c)∨X¬a)

G((¬a)∨Xb)

G(X(c∨wc))

G(X¬a) G(¬b) G(X¬b) G(¬a)

G(X((¬a)∨¬c))

2·N+1

G(X((¬a)∨ c))

2·N+1 G((¬b)∨Xa)

2·N+1

G(X((¬b)∨ c))

2·N G(X((¬b)∨¬c))

2·N

G((¬c)∨X¬a)

G((¬a)∨Xb)

2·N
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G(X¬a)

2·N+1

G(¬b) 2·N+1 G(X¬b)

2·N

G(¬a)

2·N

G((¬wc)∨X((¬b)∨ c)) G((¬b)∨ c) G((¬a)∨ c)

{0}

G((¬wc)∨X((¬a)∨ c))

G(¬a)

{0}
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Figure 1: Example of an execution of the TR algorithm with corresponding resolution graph and UC
extraction in SNF with sets of time points.

Remark 1 (Properties of LTLp). 1. An LTLp formula θ s.t. all sets of time points are N is equivalent
to the LTL formula that one obtains from θ by removing all sets of time points. 2. An LTLp formula
θ with a positive (resp. negative) polarity subformula τ , where τ is neither a Boolean constant nor an
atomic proposition, s.t. all sets of time points of the top level operator of τ are /0 is equivalent to θ with
τ replaced with 1 (resp. 0). 3. If θ and χ are two LTLp formulas s.t. θ and χ differ only in their sets of
time points, and all sets of time points in χ are (possibly non-strict) supersets of those in θ , then χ →

N,N
θ .

4. LTLp with sets of time points restricted to semilinear sets is no more expressive than QLTL (for QLTL
see, e.g., [Eme90]).

We now illustrate LTLp with an example (4), (5) that is somewhat more involved than (1)–(3) in
Sec. 1. The example is still artificial to allow focusing on sets of time points.

p∧ (G(p→ XXp))∧ (F((¬p)∧X¬p)) (4)

The first conjunct, p, and the second conjunct, G(p→ XXp), force p to be 1 at even time points. The
third conjunct, F((¬p)∧X¬p), requires that eventually p is 0 at two consecutive time points. Clearly,



V. Schuppan 11

formula positive polarity negative polarity

(π, i) |= 1 (resp. 0) ⇔ 1 (resp. 0) 1 (resp. 0)
(π, i) |= p ⇔ p ∈ π[i] p ∈ π[i]

(π, i) |= ¬
I

τ ⇔ (i 6∈ I)∨ ((π, i) 6|= τ) (i ∈ I)∧ ((π, i) 6|= τ)

(π, i) |= τ ∨
I,I′

τ ′ ⇔ ((i 6∈ I)∨ ((π, i) |= τ))∨ ((i 6∈ I′)∨ ((π, i) |= τ ′)) ((i ∈ I)∧ ((π, i) |= τ))∨ ((i ∈ I′)∧ ((π, i) |= τ ′))

(π, i) |= τ ∧
I,I′

τ ′ ⇔ ((i 6∈ I)∨ ((π, i) |= τ))∧ ((i 6∈ I′)∨ ((π, i) |= τ ′)) ((i ∈ I)∧ ((π, i) |= τ))∧ ((i ∈ I′)∧ ((π, i) |= τ ′))

(π, i) |= X
I

τ ⇔ (i+1 6∈ I)∨ ((π, i+1) |= τ) (i+1 ∈ I)∧ ((π, i+1) |= τ)

(π, i) |= τ U
I,I′

τ ′ ⇔ ∃i′ ≥ i . (((i′ 6∈ I′)∨ ((π, i′) |= τ ′))∧ (∀i≤ i′′ < i′ . ((i′′ 6∈ I)∨ ((π, i′′) |= τ)))) ∃i′ ≥ i . (((i′ ∈ I′)∧ ((π, i′) |= τ ′))∧ (∀i≤ i′′ < i′ . ((i′′ ∈ I)∧ ((π, i′′) |= τ))))

(π, i) |= τ R
I,I′

τ ′ ⇔ ∀i′ ≥ i . (((i′ 6∈ I′)∨ ((π, i′) |= τ ′))∨ (∃i≤ i′′ < i′ . ((i′′ 6∈ I)∨ ((π, i′′) |= τ)))) ∀i′ ≥ i . (((i′ ∈ I′)∧ ((π, i′) |= τ ′))∨ (∃i≤ i′′ < i′ . ((i′′ ∈ I)∧ ((π, i′′) |= τ))))

(π, i) |= F
I

τ ⇔ ∃i′ ≥ i . ((i′ 6∈ I)∨ ((π, i′) |= τ)) ∃i′ ≥ i . ((i′ ∈ I)∧ ((π, i′) |= τ))

(π, i) |= G
I

τ ⇔ ∀i′ ≥ i . ((i′ 6∈ I)∨ ((π, i′) |= τ)) ∀i′ ≥ i . ((i′ ∈ I)∧ ((π, i′) |= τ))

Table 4: Semantics of LTLp. π is a word in (2AP)ω , i is a time point in N.

the first two conjuncts contradict the third, i.e., (4) is unsatisfiable. We would now like to obtain small
sets of time points that are still sufficient for (4) to be unsatisfiable. The three conjuncts p, G(p→ XXp),
and F((¬p)∧X¬p) are evaluated only at time point 0. The operand of the second conjunct, p→ XXp,
needs to be evaluated only at even time points and, therefore, also both operands of the → operator.
Consequently, it is sufficient to evaluate Xp at odd time points and its operand, p, at even time points
> 0. The last conjunct is more complicated. The operand of the F operator has to be evaluated at every
time point; otherwise, F((¬p)∧X¬p) would evaluate to 1. Now note that at each time point one of the
two conjuncts of (¬p)∧X¬p must contradict a p induced by p∧(G(p→ XXp)). At time point 0 this can
only be the first conjunct, ¬p. Hence, if the first conjunct, ¬p, is evaluated at even time points and the
second conjunct, X¬p, is evaluated at odd time points, then unsatisfiability is preserved. The resulting
LTLp formula is shown in (5). We call (5) a UC of (4) in LTL with sets of time points.

p ∧
{0},{0}

(( G
2·N

(p →
2·N,2·N

X
2·N+1

X
2·N+2

p)) ∧
{0},{0}

(F
N
(( ¬

2·N
p) ∧

2·N,2·N+1
X

2·N+2
¬

2·N+2
p))) (5)

6 UC Extraction with Sets of Time Points

In this section we show how to enhance a UC in SNF and in LTL with the sets of time points at which its
clauses or subformulas are used in its TR proof of unsatisfiability.

UCs in SNF with Sets of Time Points Let C be a set of SNF clauses to which Alg. 1 has been applied
and shown unsatisfiability, let G be the resolution graph, let G′ be the subgraph according to Def. 2 with
corresponding UC in SNF Cuc, and let v2 denote the vertex in the main partition that is LV -labeled with
2. We start in Def. 7 with labeling edges of G′ with 1 if the source vertex is time-shifted one step into the
future with respect to the target vertex (e.g., when a global clause with empty X part is used in step-nx )
and all other edges with 0. Then, in Def. 8, we obtain a set of time points for each vertex in G′ by
assigning time point 0 to v2 (i.e., the contradiction is assumed to happen at time point 0). Any other
vertex v is assigned the set of the sums of the time steps that occur on any path from v to v2 in G′.

Definition 7 (Labeling Edges with Time Steps). LE ′ is a labeling of the set of edges in G′, E ′, with time
steps in {0,1} that maps an edge e to 1 if the corresponding column 9 (t.s. 1) or 11 (t.s. 2) in Tab. 2
contains a 4 and to 0 otherwise.
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Definition 8 (Labeling Vertices with Sets of Time Points). Let the edges of G′ be LE ′-labeled. L′V ′ is
another labeling of the set of vertices in G′, V ′, with sets of time points in 2N as follows. v2 is L′V ′-
labeled with {0}. Any other vertex v is L′V ′-labeled with a set of time points I that contains a time point i
iff there exists a path π in G′ from v to v2 such that the sum of the LE ′-labels of π is i.

We now continue the example in Fig. 1. Edges in the subgraph backward reachable from v2
that involve a time step of 1 between source and target vertex according to cols. 9 and 11 of Tab. 2
are marked red, dotted. Backward reachable edges that involve no such time step are marked blue,
dashed. In the backward reachable subgraph there are four edges that involve a time step of 1 between
source and target vertex. Two of those originate from instances of BFS-loop-it-init-n : from G((¬a)∨¬c)
in row 1 to G(X((¬a)∨¬c)) in row 5 and from G((¬b)∨¬c) in row 2 to G(X((¬b)∨¬c)) in row
5. Two others come from instances of BFS-loop-it-sub : from G(¬b) to G(X((¬b)∨ c)) and from
G(¬a) to G(X((¬a)∨ c)), both from row 6 to row 5. Furthermore, there are two edges from in-
stances of BFS-loop-conclusion2 that would be labeled with a time step of 1, if they were backward reach-
able from v2: from G(¬b) (row 6) to G((¬wc)∨X((¬b)∨ c)) (row 7) and from G(¬a) (row 6) to
G((¬wc)∨X((¬a)∨ c)) (row 7). Figure 1 contains no edges induced by an instance of step-nx . Notice
how in each case the literals that are taken from the source vertex and put into the target vertex are in the
X part of the target vertex while they are not in the X part of the source vertex; this is not the case for
pairs of source and target vertex connected by an edge that is (or would be) labeled with time step 0.

Each clause c in the backward reachable subgraph is labeled with a set of time points (shown in a
black box) obtained by counting the number of red, dotted edges that are traversed on any — possibly
looping — path from vc to v2 according to Def. 8. For example, a in row 1 can only reach 2 directly
via a blue, dashed edge, leading to set of time points {0} (which is the only one making sense for an
initial clause; see Lemma 1). Similarly, G(¬a) (row 8), G((¬a)∨ c) (row 7), and G(Fc) (row 1) can
only reach 2 via sequences of blue, dashed edges, so they are also labeled with {0}. Only one of the
clauses comprising the second loop search iteration (rows 5 and 6 in the light green shaded rectangle) can
reach 2 without passing through any other clause in rows 5 or 6, namely G(¬a) (row 6) via a sequence
of blue, dashed edges. I.e., its set of time points must contain {0}. However, G(¬a) is also part of the
loop G(¬a)—G(X((¬a)∨ c))—G(X¬a)—G(¬b)—G(X((¬b)∨ c))—G(X¬b)—G(¬a) that involves
a time step of 1 between G(¬a) and G(X((¬a)∨ c)) as well as between G(¬b) and G(X((¬b)∨ c)).
Hence, for each even i there exists a path such that G(¬a) can reach 2 on that path and that path contains
i edges involving time steps of 1. Consequently, G(¬a) is labeled with 2·N. The same holds for all ver-
tices in rows 5 and 6 that are either on the loop between G(X((¬b)∨ c)) and G(¬a) or backward reach-
able from those via blue, dashed edges: G(X((¬b)∨ c)), G(X¬b), G(X((¬b)∨¬c)), and G((¬a)∨Xb).
Analogously all vertices in rows 5 and 6 that are on the loop between G(X((¬a)∨ c)) and G(¬b) or back-
ward reachable from those via blue, dashed edges are labeled with 2·N+1: G(X((¬a)∨ c)), G(X¬a),
G(¬b), G(X((¬a)∨¬c)), and G((¬b)∨Xa). Finally, consider G((¬a)∨¬c) in row 1. It reaches 2

via G(¬a) traversing no red, dotted edge, giving {0}. However, there is also the set of paths through
the partition of the second loop search iteration, which uses 2·N+ 2 red, dotted edges. Taking both
contributions together we obtain 2·N for this clause.

From now on we assume in this section that the edges and vertices of G′ are labeled according to
Def. 7 and 8. The following two lemmas are needed to prove correctness of UC extraction in SNF with
sets of time points in Thm. 3. They can easily be proved from Def. 7, 8. Proposition 1 establishes that
the sets of time points obtained in Def. 8 are semilinear (as suggested for tableaux in [Sch12b]). The
construction in its proof will later be a fundamental step to actually compute the sets of time points.
Lemma 1 (Sets of Time Points for Vertices Labeled with Initial Clauses are {0}). Any vertex v in G′ that
is LV -labeled with an initial clause is L′V ′-labeled with {0}.
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Lemma 2 (Labeling of Target Vertex is (Possibly Time-Shifted) Subset of Labeling of Source Vertex).
For each pair of vertices v,v′ in G′ such that there is an edge from v to v′ in G′, the labeling L′V ′(v

′)
is a (premise 1 of step-nx , BFS-loop-it-init-n , BFS-loop-it-sub , BFS-loop-conclusion2 : time-shifted) subset of the
labeling L′V ′(v).

Proposition 1 (Sets of Time Points are Semilinear Sets). For each vertex v in G′ the labeling L′V ′(v) is a
semilinear set.

Proof. For each vertex v turn the graph G′ into a transition-labeled nondeterministic finite automaton
(NFA) on finite words over {0,1} as follows: (i) The set of states is the set of vertices of the graph G′, V ′.
(ii) The set of transitions is the set of reversed edges of the graph G′. (iii) The labeling of the transitions
is given by the LE ′-labeling of the corresponding edges. (iv) The (only) initial state is v2. (v) The (only)
final state is v. Now it’s clear from Def. 8 that the L′V ′-labeling of the vertex v is the Parikh image of
the letter 1 of the regular language given by the automaton. The claim follows from Parikh’s theorem
[Par66].

We now define UCs in SNF with sets of time points. To simplify notation we first define what it
means to assign a set of time points to an SNF clause (Def. 9). The definition of a UC in SNF with
sets of time points is then immediate in Def. 10. Given the proof of Thm. 1 (see [Sch12a]) the proof of
correctness in Thm. 3 (in App. B) can focus on why the construction remains correct with sets of time
points. In Prop. 2 we state an upper bound on the complexity of extracting a UC in SNF with sets of time
points.

Definition 9 (SNF Clauses with Sets of Time Points). Let I be a set of time points. Let c be an SNF
clause. Then c with set of time points I, c

I
, is the following LT Lp formula:3

c
I
=



((¬
I
)p1 ∨

I,I
. . . ∨

I,I
(¬

I
)pn)

if c = ((¬)p1∨ . . .∨ (¬)pn) is an initial clause; or

(G
I
((¬

I
)p1 ∨

I,I
. . . ∨

I,I
(¬

I
)pn ∨

I,I
( X

I+1
( ¬

I+1
)q1 ∨

I+1,I+1
. . . ∨

I+1,I+1
( ¬

I+1
)qn′)))

if c = (G(((¬)p1∨ . . .∨ (¬)pn)∨ (X((¬)q1∨ . . .∨ (¬)qn′)))) is a global clause; or

(G
I
(((¬

I
)p1 ∨

I,I
. . . ∨

I,I
(¬

I
)pn) ∨

I,I
( F
[min(I),∞)

(( ¬
[min(I),∞)

)l))))

if c = (G(((¬)p1∨ . . .∨ (¬)pn)∨ (F((¬)l)))) is an eventuality clause.

Definition 10 (UC in SNF with Sets of Time Points). Let c1,1, . . . ,c1,n1 be the initial clauses in Cuc, c2,1,
. . ., c2,n2 the global clauses in Cuc, and c3,1, . . ., c3,n3 the eventuality clauses in Cuc. Let vm,m′ be the
unique vertex in the main partition M of G′ LV -labeled with clause cm,m′ . Let Im,m′ be the set of time
points that vertex vm,m′ is L′V ′-labeled with in G′. The UC of C in SNF with sets of time points, θ uc, is
given by

c1,1
I1,1

∧
{0},{0}

. . . ∧
{0},{0}

c1,n1
I1,n1

∧
{0},{0}

c2,1
I2,1

∧
{0},{0}

. . . ∧
{0},{0}

c2,n2
I2,n2

∧
{0},{0}

c3,1
I3,1

∧
{0},{0}

. . . ∧
{0},{0}

c3,n3
I3,n3

.

Theorem 3 (Unsatisfiability of UC in SNF with Sets of Time Points). Let θ uc be the UC of C in SNF
with sets of time points. Then θ uc is unsatisfiable.

3In this definition (¬) indicates a negation that may or may not be present.
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Proposition 2 (Complexity of UC Extraction with Sets of Time Points). Let θ uc be the UC of C in SNF
with sets of time points. Construction of θ uc from G′ can be performed in time O(|V ′|3 + |V ′|2 · |C|).

Proof. (Sketch) Construct an NFA from G′ along the lines of the proof of Prop. 1. Turn the NFA into a
unary NFA by regarding edges LE ′-labeled with 0 as ε-edges and making the NFA ε-free (e.g., [HU79]).
Finally, use an algorithm by Gawrychowski [Gaw11] extended to handle all final states in parallel to
compute sets of time points.

We now apply Def. 10 to the example in Fig. 1 and obtain (6) as a UC in SNF with sets of time
points. Notice, that all occurrences of a occur at even time points and how both occurrences of b interact
at odd time points. Moreover, the last clause shows that only a single occurrence of c is required for
unsatisfiability. Finally, the fourth clause has ¬c at even time points, while the fifth clause becomes
relevant at odd time points; thus all potential occurrences of c are covered. This concludes this example.

a ∧
{0},{0}

( G
2·N

(( ¬
2·N

a) ∨
2·N,2·N

X
2·N+1

b)) ∧
{0},{0}

( G
2·N+1

(( ¬
2·N+1

b) ∨
2·N+1,2·N+1

X
2·N+2

a)) ∧
{0},{0}

( G
2·N

(( ¬
2·N

a) ∨
2·N,2·N

¬
2·N

c)) ∧
{0},{0}

( G
2·N+1

(( ¬
2·N+1

c) ∨
2·N+1,2·N+1

X
2·N+2

¬
2·N+2

a)) ∧
{0},{0}

( G
{0}

(F
N

c))
(6)

UCs in LTL with Sets of Time Points Definition 11 adds sets of time points to a UC in LTL by
transferring them from a UC in SNF with time points to a UC in LTL. The proof idea for Thm. 4 (in
App. B) is similar to that of Thm. 2 (see [Sch12a]), but in addition we need to define a translation
from the corresponding fragment of LTLp to SNF with sets of time points, which must be shown to be
satisfiability- but not unsatisfiability-preserving.

Definition 11 (Mapping a UC in SNF with Sets of Time Points to a UC in LTL with Sets of Time Points).
Let φ be an unsatisfiable LTL formula, let SNF(φ) be its SNF, let φ uc be the UC of φ in LTL, and let θ uc

be the UC of SNF(φ) in SNF with sets of time points. Construct the UC of φ in LTL with sets of time
points, θ ′uc, by assigning a set of time points I to each occurrence of a subformula ψ in φ uc as follows.
Let I′, I′′, . . . be the sets of time points of the occurrences of the proposition xψ in θ uc that are marked
blue boxed in Tab. 3. Then assign the occurrence of ψ in φ uc the set of time points I that is the union of
I′, I′′, . . ..

Theorem 4 (Unsatisfiability of UC in LTL with Sets of Time Points). Let φ be an unsatisfiable LTL
formula, and let θ ′uc be the UC of φ in LTL with sets of time points. Then θ ′uc is unsatisfiable.

It’s easy to see that no subformula in (1) or (4) can be replaced with 1 (for positive polarity occur-
rences) or 0 (for negative polarity occurrences) without making (1) or (4) satisfiable. I.e., (1) or (4) are
the only UCs of themselves according to Def. 10 in [Sch12b] (and, hence, according to Def. 4). The
corresponding UCs in LTL with sets of time points in (3) and (5) show that UCs with sets of time points
can be more fine-grained than UCs without.

7 Example

In this section we present an example that shows the utility of UCs with sets of time points for debugging
that is closer to a real world situation. The UCs in this as well as in all other examples in this paper were
obtained with our implementation, possibly except for minor rewriting.

The example (7) in Fig. 2 reuses the example of a lift specification from [Sch12a] (originally adapted
from [Har05]) but extends it with sets of time points to show that understanding the presence of a problem
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(¬u)∧ ( f0)∧ (¬b0)∧ (¬b1)∧ (¬up) (7a)
∧ (G((u→¬Xu)∧ ((¬Xu)→ u))) (7b)
∧ (G( f0→¬ f1)) (7c)
∧ (G(( f0→ X( f0∨ f1))∧ ( f1→ X( f0∨ f1)))) (7d)
∧ (G(u→ (( f0→ X f0)∧ ((X f0)→ f0)∧ ( f1→ X f1)∧ ((X f1)→ f1)))) (7e)
∧ (G(((¬u)→ ((b0→ Xb0)∧ ((Xb0)→ b0)∧ (b1→ Xb1)∧ ((Xb1)→ b1))))) (7f)
∧ (G(((b0∧¬ f0)→ Xb0)∧ ((b1∧¬ f1)→ Xb1))) (7g)
∧ (G(( f0∧X f0)→ ((up→ Xup)∧ ((Xup)→ up)))) (7h)
∧ (G(( f1∧X f1)→ ((up→ Xup)∧ ((Xup)→ up)))) (7i)
∧ (G((( f0∧X f1)→ up)∧ (( f1∧X f0)→¬up))) (7j)
∧ (G((sb→ (b0∨b1))∧ ((b0∨b1)→ sb))) (7k)
∧ (G((( f0∧¬sb)→ ( f0U(sbR((F f0)∧ (¬up)))))) (7l)
∧ (G((( f1∧¬sb)→ ( f1U(sbR((F f0)∧ (¬up)))))) (7m)
∧ (G((b0→ F f0)∧ (b1→ F f1))) (7n)

Figure 2: A lift specification.

becomes easier. The lift has two floors, indicated by f0 and f1. On each floor there is a button to call the
lift (b0, b1). sb is 1 if some button is pressed. If the lift moves up, then up must be 1; if it moves down,
then up must be 0. u switches turns between actions by users of the lift (u is 1) and actions by the lift (u
is 0). For a more detailed explanation we refer to [Har05].

We first assume that an engineer is interested in seeing whether it is possible that b1 is continuously
pressed (8). As the UC (9) shows this is impossible as b1 must be 0 at time point 0. Notice that (9)
indicates that the argument of the G operator is only needed at time point 0 (trivial to see in this case).

Gb1 (8)

( ¬
{0}

b1) ∧
{0},{0}

G
{0}

b1 (9)

Now the engineer modifies her query such that b1 is pressed only from time point 1 on (10). That is
impossible, too; as the UC in (11) shows also this time the press of b1 is required only at one time point.

XGb1 (10)

( ¬
{0}

u) ∧
{0},{0}

(( ¬
{0}

b1) ∧
{0},{0}

(( G
{0}

(( ¬
{0}

u) →
{0},{0}

(( X
{1}

b1) →
{0},{0}

b1))) ∧
{0},{0}

( X
{1}

G
{1}

b1))) (11)

The engineer now tries to have b1 pressed only from time point 2 on and also obtains a UC that needs
b1 pressed only at a single time point (not shown). She becomes suspicious and checks whether b1 can be
pressed at all. She now sees that b1 cannot be pressed at any time point and, therefore, this specification
of a lift must contain a bug. This example illustrates the benefits of UCs with sets of time points, as (9)
and (11) make it clear that b1 being 1 is only needed at a single time point for unsatisfiability.

For an example showing disjuncts of an invariant holding at different time points and for an example
from the business process domain see App. C.

8 Experimental Evaluation

Our implementation, examples, and log files are available from [www].
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category family source # solved |largest solved|
UC w/o s.o.t.p. UC w/ s.o.t.p. (Gawrychowski) UC w/ s.o.t.p. (Sawa)

alaska lift [Har05,Wul+08] 72 73 73 4605
application anzu genbuf [Blo+07] 16 16 16 1924

forobots [BDF09] 25 25 25 635
schuppan O1formula [SD11] 27 27 27 4006

crafted schuppan O2formula [SD11] 8 7 7 91
schuppan phltl [SD11] 4 4 4 125
rozier formulas [RV10] 62 62 62 157random
trp [HS02] 397 397 397 1421

Table 5: Overview of benchmark families.

Implementation We use the version of TRP++ extended with extraction of UCs from [Sch12a] as the
basis for our implementation. For data structures we used C++ Standard Library containers (e.g., [SL95,
Jos12]), for graph operations the Boost Graph Library [bgl,SLL02].

Algorithms for Extracting Sets of Time Points We implemented extraction of sets of time points
along the lines of the proofs of Prop. 1, 2. To make an NFA ε-free we use a standard algorithm that
performs DFS from each state to find the sets of states that are reachable via a sequence of ε-edges,
inserts 1-edges between pairs of vertices v, v′ such that v can reach v′ by reading ε∗1ε∗, and removes
ε-edges (e.g., [HU79]). To compute Parikh images for unary NFAs we implemented an algorithm by
Gawrychowski [Gaw11] and one by Sawa [Saw13]. Both assume a single set of final states leading to a
single Parikh image. We, however, have one final state for each SNF clause in the UC in SNF, each of
which we need to assign a separate Parikh image. We adapted Gawrychowski’s algorithm to our setting
by computing the Parikh images for different final states in a single run of the algorithm. Similarly, we
optimized Sawa’s algorithm by computing parts that are common for different final states only once and
by heuristically accelerating some of its steps.

Benchmarks Our examples are based on [SD11]. In categories crafted and random and in family
forobots we considered all unsatisfiable instances from [SD11]. The version of alaska lift used here
contains a small bug fix: in [Wul+08,SD11] the subformula Xu was erroneously written as literal Xu.
Combining 2 variants of alaska lift with 3 different scenarios we obtain 6 subfamilies of alaska lift. For
anzu genbuf we invented 3 scenarios to obtain 3 subfamilies. For all benchmark families that consist of
a sequence of instances of increasing difficulty we stopped after two instances that could not be solved
due to time or memory out. Some instances were simplified to 0 during the translation from LTL to SNF;
these instances were discarded. In Tab. 5 we give an overview of the benchmark families. Columns 1–3
give the category, name, and the source of the family. Columns 4–6 list the numbers of instances that
were solved by our implementation with UC extraction without sets of time points, with UC extraction
with sets of time points using Gawrychowski’s algorithm, and with UC extraction with sets of time points
using Sawa’s algorithm. Column 7 indicates the size (number of nodes in the syntax tree) of the largest
instance solved with UC extraction without sets of time points.

Setup The experiments were performed on a laptop with Intel Core i7 M 620 processor at 2 GHz
running Ubuntu 12.04. Run time and memory usage were measured with run [run]. The time and
memory limits were 600 seconds and 6 GB.

Results In Fig. 3 (a) and (b) we show the overhead that is incurred by extracting UCs with sets of time
points. Figure 3 (c) and (d) compare using Gawrychowski’s and Sawa’s algorithm for computing sets of
time points. In Tab. 6 we show which sets of time points occur in the UCs of which benchmark families.



V. Schuppan 17

 0.1

 1

 10

 100

to  
  mo

 0.1  1  10  100 to    mo

U
C

 e
x
tr

a
c
ti
o

n
 w

it
h

 s
e

ts
 o

f 
ti
m

e
p

o
in

ts
 (

G
a

w
ry

c
h

o
w

s
k
i)

UC extraction without sets of time
points

1

10

100

1000

to  
  mo

1 10 100 1000 to    mo

U
C

 e
x
tr

a
c
ti
o

n
 w

it
h

 s
e

ts
 o

f 
ti
m

e
p

o
in

ts
 (

G
a

w
ry

c
h

o
w

s
k
i)

UC extraction without sets of time
points

 0.1

 1

 10

 100

to  
  mo

 0.1  1  10  100 to    mo

U
C

 e
x
tr

a
c
ti
o

n
 w

it
h

 s
e

ts
 o

f 
ti
m

e
p

o
in

ts
 (

S
a

w
a

)

UC extraction with sets of time
points (Gawrychowski)

1

10

100

1000

to  
  mo

1 10 100 1000 to    mo

U
C

 e
x
tr

a
c
ti
o

n
 w

it
h

 s
e

ts
 o

f 
ti
m

e
p

o
in

ts
 (

S
a

w
a

)

UC extraction with sets of time
points (Gawrychowski)

(a) run time [sec] (b) memory [MB] (c) run time [sec] (d) memory [MB]

Figure 3: Overhead of UC extraction with sets of time points: (a) and (b) show run time and memory for
UC extraction with sets of time points using Gawrychowski’s algorithm (y-axis) versus UC extraction
without sets of time points (x-axis). (c) and (d) compare run time and memory for Sawa’s algorithm (y-
axis) and Gawrychowski’s algorithm (x-axis) for UC extraction with sets of time points. The off-center
diagonal in (a) and (b) shows where y = 2x.
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alaska lift 4 4 4 4 4 4 4
application anzu genbuf 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4

forobots 4 4 4 4 4 4 4 4 4

schuppan O1formula 4 4
crafted schuppan O2formula 4 4 4

schuppan phltl 4 4 4 4 4 4 4 4 4

rozier formulas 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4random
trp 4 4 4 4 4 4 4 4

Table 6: Occurrences of sets of time points in UCs: A 4 in a field indicates that a subformula in a UC of
that benchmark family is assigned that set of time points.

Discussion Our data show that extraction of UCs with sets of time points is possible with quite accept-
able overhead in run time and memory usage (Fig. 3 (a), (b)). In particular, out of the 698 instances we
considered with UC extraction without sets of time points, a UC was obtained for 611. With sets of time
points enabled one instance more4 and one instance less are solved. An analysis by category (for plots
see App. D) shows that the run time (resp., memory) overhead for almost all instances of the application
category is at most 50 % (resp., 100 %) for UC extraction with sets of time points using Gawrychowski’s
algorithm over UC extraction without sets of time points.

Sets of time points often provide helpful information. For some subfamilies of the anzu genbuf and
trp families they show that some subformulas are required only every 4th, 5th, or 12th time point. For
an instance of the forobots family they make it clear that only the first two time points are relevant, even
though some of the subformulas involved are G subformulas. For the schuppan phltl family (a temporal
version of the pigeon hole problem (e.g., [Bie+09]); n pigeon holes are turned into a single pigeon hole
over n time points) they indicate how the conditions of mutual exclusivity for the hole are invoked one
after the other.

Gawrychowski’s algorithm [Gaw11] has better worst case complexity than Sawa’s algorithm [Saw13].
We also found it easier to understand and implement. On our benchmarks Gawrychowski’s algorithm
tends to perform better than Sawa’s algorithm (Fig. 3 (c) and (d)), especially when the NFAs become

4For this instance the run time with sets of time points is just below the time limit.
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larger.

9 Conclusions

In this paper we showed how to obtain information on the time points at which subformulas of a UC
for LTL are required for unsatisfiability, providing useful information in many cases and leading to a
more fine-grained notion of UC than in [Sch12b]. We demonstrated with an implementation in TRP++

that UCs with sets of time points can be extracted efficiently. Potential future work includes extending
the computation of sets of time points to tableau-based UC extraction for LTL such as [HH11] and
exploring whether computation of sets of time points is feasible for BDD-based algorithms via, e.g.,
[SB06,JSB06]. Other questions are how to apply the idea of sets of time points to unrealizable cores for
LTL (e.g., [Sch12b]) or to branching time temporal logics. One could also investigate obtaining sets of
time points by solving a system of constraints over sets of time points based on Lemmas 1, 2 rather than
the approach based on Parikh images explored here. Finally, it would be interesting to see whether/how
minimal or minimum sets of time points can be obtained, where ≤ is set inclusion (rather than syntactic
expression size).
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A Proofs: 5 LTL with Sets of Time Points (LTLp)

Let LTLp2LTL denote the function that takes an LTLp formula θ and returns an LTL formula φ by
removing all sets of time points.

Lemma 3 (LTLp with all sets of time points N is LTL). Let θ be an LTLp formula such that all sets of
time points are N, and let φ ≡ LTLp2LTL(θ). Then θ and φ are equivalent.

Proof. By induction on θ . Base cases: Boolean constants and atomic propositions do not have sets
of time points. Inductive cases: Each test for non-inclusion (i.e., i 6∈ I) in Tab. 4 is a left operand of
a disjunction that, with i 6∈ N being 0, evaluates to its right operand. The latter evaluates to its LTL
equivalent by inductive assumption. The case for inclusion is analogous.

We take Lemma 3 as justification to use LTL operators (i.e., operators without sets of time points) to
abbreviate LTLp operators with N as sets of time points.

Lemma 4 (An LTLp operator with sets of time points /0 is equivalent to 1/0). Let θ be an LTLp formula
with a positive (resp. negative) polarity subformula τ that is neither a Boolean constant nor an atomic
proposition and with the sets of time points of the top level operator of τ being /0. Then θ and θ such
that τ is replaced with 1 (resp. 0) are equivalent.

Proof. Directly from Def. 6: if τ has positive polarity, then the tests for non-inclusion (such as i 6∈ I) in
Tab. 4 are left operands of disjunctions and evaluate to 1; the case for negative polarity is analogous.

Lemma 5 (Enlarging sets of time points strengthens positive and weakens negative polarity subformu-
las). Let θ be an LTLp formula, let χ be such a modification of θ such that LTLp2LTL(θ)=LTLp2LTL(χ)
and all sets of time points in χ are (possibly non-strict) supersets of those in θ . Then χ →

N,N
θ .

Proof. We show by induction on θ that for each subformula τ in θ with corresponding subformula σ

in χ of positive (resp. negative) polarity σ →
N,N

τ (resp. τ →
N,N

σ ). Base cases: Boolean constants and

atomic propositions do not have sets of time points. Inductive cases: For any LTLp operator except
¬ the operands τ ′ (, τ ′′) with associated sets of time points I′ (, I′′) have the same polarity as τ . The
result follows by inductive assumption and increasing (resp. decreasing) monotonicity of Def. 6 in the
operands and decreasing monotonicity in the sets of time points. For ¬ it is sufficient to note that it is
monotonically decreasing (resp. increasing) in its operand, monotonically decreasing in its set of time
points, and τ has opposite polarity of ¬

I′
τ ′.

Lemma 6. LTLp with sets of time points restricted to semilinear sets is at most as expressive as QLTL
(for QLTL see, e.g., [Eme90]).

Proof. Let θ be an LTLp formula with sets of time points restricted to semilinear sets. I.e., each set of
time points I occurring in θ can be written as

⋃
1≤i≤n pi·N+oi for some n∈N, p1, . . . , pn,o1, . . . ,on ∈N.

For m ∈N let Xmψ abbreviate X . . .X︸ ︷︷ ︸
m

ψ . Construct a QLTL formula as follows:

1. For each set of time points I introduce n fresh Boolean propositions qIi and a fresh Boolean propo-
sition qI .

2. Let ◦1 ∈ {¬,X,F,G} and ◦2 ∈ {∨,∧,U,R}. Replace each

(a) positive polarity occurrence of ◦1
I

τ in θ with ◦1(qI → τ),
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(b) negative polarity occurrence of ◦1
I

τ in θ with ◦1(qI ∧ τ),

(c) positive polarity occurrence of τ ◦2
I,I′

τ ′ in θ with (qI → τ)◦2 (qI′ → τ ′), and

(d) negative polarity occurrence of τ ◦2
I,I′

τ ′ in θ with (qI ∧ τ)◦2 (qI′ ∧ τ ′).

3. For each set of time points I replace θ with ∃qI . ((G(qI ↔
∨

1≤i≤n qIi))∧ (θ)).

4. For each set of time points I, for each fresh proposition qIi , replace θ with

∃qIi . ((
∧

0≤i′<oi

Xi′¬qIi)∧ (Xoi(qIi ∧G(qIi → ((
∧

1≤i′<pi

Xi′¬qIi)∧ (XpiqIi)))))∧ (θ))).

It’s not hard to see that the resulting QLTL formula has the same set of satisfying assignments as θ . This
concludes the proof.

With Lemma 3–6 we have proved all parts of Remark 1.

Remark 1 (Properties of LTLp). 1. An LTLp formula θ s.t. all sets of time points are N is equivalent
to the LTL formula that one obtains from θ by removing all sets of time points. 2. An LTLp formula
θ with a positive (resp. negative) polarity subformula τ , where τ is neither a Boolean constant nor an
atomic proposition, s.t. all sets of time points of the top level operator of τ are /0 is equivalent to θ with
τ replaced with 1 (resp. 0). 3. If θ and χ are two LTLp formulas s.t. θ and χ differ only in their sets of
time points, and all sets of time points in χ are (possibly non-strict) supersets of those in θ , then χ →

N,N
θ .

4. LTLp with sets of time points restricted to semilinear sets is no more expressive than QLTL (for QLTL
see, e.g., [Eme90]).

B Proofs: 6 UC Extraction with Sets of Time Points

Lemma 1 (Sets of Time Points for Vertices Labeled with Initial Clauses are {0}). Any vertex v in G′ that
is LV -labeled with an initial clause is L′V ′-labeled with {0}.

Proof. By Tab. 2 the only production rules that have initial clauses as premises are the initial resolution
rules init-ii and init-in . Both rules have (as the only ones) an initial clause as conclusion. We denote with
v2 the unique vertex in the main partition LV -labeled with the empty clause 2. Hence, either G′ contains
no vertex LV -labeled with an initial clause, in which case the claim is vacuously true. Otherwise, the
empty clause that LV -labels v2 is an initial clause and v2 and all vertices LV -labeled with initial clauses
are connected via edges LE ′-labeled 0. The claim now follows with Def. 8 by induction on the distance
of a vertex LV -labeled with an initial clause from v2.

Lemma 2 (Labeling of Target Vertex is (Possibly Time-Shifted) Subset of Labeling of Source Vertex).
For each pair of vertices v,v′ in G′ such that there is an edge from v to v′ in G′, the labeling L′V ′(v

′)
is a (premise 1 of step-nx , BFS-loop-it-init-n , BFS-loop-it-sub , BFS-loop-conclusion2 : time-shifted) subset of the
labeling L′V ′(v).

Proof. Directly by Def. 8.

Theorem 3 (Unsatisfiability of UC in SNF with Sets of Time Points). Let θ uc be the UC of C in SNF
with sets of time points. Then θ uc is unsatisfiable.
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Proof. In this proof we focus on reasoning why the production rules of TR continue to lead to correct
inferences or to propagate information correctly in the presence of sets of time points. We assume that
the clauses in the LV -labeling of G′ are assigned the sets of time points in the L′V ′-labeling of G′ according
to Def. 9. I.e., for any vertex v in the subgraph G′, if c = LV (v) and I = L′V ′(v), then we identify c and c

I
.

We proceed as follows. We first show that inferences based on initial and step resolution rules init-ii ,
init-in , step-nn , step-nx , and step-xx also hold when taking sets of time points into account. Next we show

that productions BFS-loop-it-init-x , BFS-loop-it-init-n , BFS-loop-it-init-c , and BFS-loop-it-sub required as part of
BFS loop search also apply with sets of time points, and then we show what a BFS loop search with sets
of time points actually proves. Finally, we use the latter to show validity of the remaining rules aug1 ,
aug2 , BFS-loop-conclusion1 , and BFS-loop-conclusion2 .

For initial and step resolution notice, that these inference rules can be seen as essentially conjunctions
of propositional inferences at a single (initial resolution) or all (step resolution) time points. For example,
step resolution step-nn between (G(p1∨ . . .∨pn)) and (G(q1∨ . . .∨qn′)) can be seen as propositional
resolution between (p1∨ . . .∨pn) and (q1∨ . . .∨qn′) applied at all time points i ∈N. Hence, for init-ii

and init-in , as long as time point 0 is contained in the sets of time points of the premises, the conclusion
can be inferred at time point 0. Similarly, for step-nn and step-xx , if I is the set of time points of premise
1 and I′ is the set of time points of premise 2, then the conclusion holds at time points I ∩ I′. Taking
time-shift into account, for step-nx , if I is the set of time points of premise 1 and I′ is the set of time
points of premise 2, then the conclusion holds at time points ((I−1)∩N)∩ I′. Using Lemmas 1 and 2,
we can conclude that all instances of initial and step resolution in G′ are correct inferences also when
taking sets of time points into account.

The role of production rules BFS-loop-it-init-x and BFS-loop-it-init-n is propagation of information from
the main partition to the loop partition. By Lemma 2 it is clear that information is propagated correctly
also with sets of time points. Production rule BFS-loop-it-init-c does not lead to the creation of edges in
G, hence, there is nothing to prove. Production rule BFS-loop-it-sub continues to record a correct relation
between two clauses by a similar argument as for the rules used in saturation.

Let c = (G(p1∨ . . .∨pn)) be a clause contained in C′ (see line 13 in Alg. 1) of a successful BFS loop
search iteration. Let vc be the corresponding vertex in the subgraph G′ and let I be the L′V ′-labeling of
vc. In order to understand what a BFS loop search iteration actually proves in the context of sets of time
points we now trace c, starting at a single time point i∈ I, backwards through the corresponding partition
L of the subgraph G′. We inductively define the following sets of clauses:

1. Let V ′i be the singleton set containing vc: V ′i = {vc}. Let C′i be the singleton set containing c with
set of time points {i} assigned: C′i = { c

{i}
}= {( G

{i}
(p1 ∨

{i},{i}
. . . ∨
{i},{i}

pn))}.

2. For all i≤ i′ we define C′′i′ as follows. Let V ′′i′ be the set of vertices in partition L that are backward
reachable from some vertex in V ′i′ via edges generated by saturation restricted to rule step-xx and
that are LV -labeled with a clause generated by BFS-loop-it-init-c . Then C′′i′ is the set of all clauses
LV -labeling some vertex in V ′′i′ with set of time points {i′} assigned: C′′i′ = { c′′

{i′}
| ∃v′′ ∈V ′′i′ . c′′ =

LV (v′′)}.

3. For all i < i′ we define C′i′ as follows. Let V ′i′ be the set of vertices in partition L that are backward
reachable from vertices in V ′′i′−1 via edges generated by BFS-loop-it-sub . Then C′i′ is the set of all
clauses LV -labeling some vertex in V ′i′ with set of time points {i′} assigned: C′i′ = { c′

{i′}
| ∃v′ ∈

V ′i′ . c′ = LV (v′)}.
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Intuitively, for a given i′, C′′i′ represents a subset of the clauses that are required (in addition to the
UC in SNF Cuc) to prove the clauses in C′i′ at time point i′ by saturation restricted to rule step-xx . In
turn, C′i′+1 is needed to establish C′′i′ by subsumption BFS-loop-it-sub . Note that, disregarding sets of time
points, C′′i′ is bounded from above by the set of clauses in partition L that are generated by BFS-loop-it-init-c

and C′i′ is bounded from above by C′ (line 13 in Alg. 1). Hence, disregarding sets of time points, the
sequences C′′i′ and C′i′ eventually will become cyclic.

Using the definition of C′′i′ and C′i′ in 1.–3. above as well as the correctness of step-xx in the presence
of sets of time points as argued above, we can infer that, assuming the UC θ uc, it is provable that the
conjunction of the clauses in C′′i′ at any time point i′ ≥ i implies the conjunction of the clauses in C′i′ at
that time point. I.e., assuming θ uc, it is provable that

∀i≤ i′ . (
∧

c′′∈C′′i′
c′′)→ (

∧
c′∈C′i′

c′). (12)

Again using the definition of C′′i′ and C′i′ in 1.–3. above as well as the correctness of BFS-loop-it-sub in
the presence of sets of time points sets as argued above, we can infer that the conjunction of the clauses
in C′i′ at any time point i′ > i implies the conjunction of the clauses in C′′i′−1 at time point i′−1. I.e.,

∀i < i′ . (
∧

c′∈C′i′
c′)→ (

∧
c′′∈C′′i′−1

c′′). (13)

Notice that for all time points i′ ≥ i any element of the set C′′i′ is of the form

( G
{i′}

((0) ∨
{i′},{i′}

( X
{i′+1}

(q1 ∨
{i′+1},{i′+1}

. . . ∨
{i′+1},{i′+1}

qn ∨
{i′+1},{i′+1}

l)))).

I.e., we have
∀i≤ i′ . ∀c′′ ∈C′′i′ . (X G

{i′+1}
l)→ c′′. (14)

Finally, remember that c = (G(p1∨ . . .∨pn)) is a clause contained in C′ of a successful BFS loop
search iteration and that I is the L′V ′-labeling of the corresponding vertex vc with i ∈ I. Taking (12) – (14)
with some rewriting we obtain (15) to tell us what a successful BFS loop search with sets of time points
actually proves:

( G
{i}

((p1 ∨
{i},{i}

. . . ∨
{i},{i}

pn) ∨
{i},{i}

( X
{i+1}

G
[i+1,∞)

¬
[i+1,∞)

l))). (15)

For BFS-loop-conclusion1 assume (G
I
((q1 ∨

I,I
. . . ∨

I,I
qn′) ∨

I,I
( F
[min(I),∞)

(l)))) and

(G
I′
((p1 ∨

I′,I′
. . . ∨

I′,I′
pn) ∨

I′,I′
( X

I′+1
G

[min(I′)+1,∞)
¬

[min(I′)+1,∞)
l))). Let i ∈ I ∩ I′. Now it’s easy to see that

if neither q1∨ . . .∨qn′ nor p1∨ . . .∨pn hold at time point i, then l must hold. Hence, we have

( G
I∩I′

((q1 ∨
I∩I′,I∩I′

. . . ∨
I∩I′,I∩I′

qn′) ∨
I∩I′,I∩I′

(p1 ∨
I∩I′,I∩I′

. . . ∨
I∩I′,I∩I′

pn) ∨
I∩I′,I∩I′

l)).

By Lemma 2 the set of time points L′V ′-labeling the target vertex is a subset of the sets of time points L′V ′-
labeling the source vertices. As I∩ I′ is the largest set that is a subset of both I and I′, these productions
remain correct with sets of time points.

For aug1 , aug2 , and BFS-loop-conclusion2 assume (G
I
((q1 ∨

I,I
. . . ∨

I,I
qn′) ∨

I,I
( F
[min(I),∞)

(l)))) and

(G
I′
((p1 ∨

I′,I′
. . . ∨

I′,I′
pn) ∨

I′,I′
( X

I′+1
G

[min(I′)+1,∞)
¬

[min(I′)+1,∞)
l))). Let wl be fresh. Now it’s easy to see that

we can add the following clauses without affecting satisfiability of θ uc: (G
I
(q1 ∨

I,I
. . . ∨

I,I
qn′ ∨

I,I
l ∨

I,I
wl)),
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(G
N
((¬
N

wl) ∨
N,N

(X
N
(l ∨
N,N

wl)))), and ( G
I′−1

(( ¬
I′−1

wl) ∨
I′−1,I′−1

(X
I′
(p1 ∨

I′,I′
. . . ∨

I′,I′
pn ∨

I′,I′
l)))). By Lemma 2,

for aug1 and BFS-loop-conclusion2 the set of time points L′V ′-labeling the target vertex is a subset of the sets
of time points L′V ′-labeling the source vertices. For aug2 any set of time points is a subset of N. Hence,
these productions remain correct with sets of time points. This concludes the proof.

Proposition 2 (Complexity of UC Extraction with Sets of Time Points). Let θ uc be the UC of C in SNF
with sets of time points. Construction of θ uc from G′ can be performed in time O(|V ′|3 + |V ′|2 · |C|).

Proof. We assume that for each vertex in the graph there is a list of incoming and outgoing edges. Sets
are represented as arrays of bits of predetermined, fixed size with 1 bit for each potential set element.
With n potential set elements that incurs cost O(1) for element addition, removal, and membership test
as well as O(n) for set creation and reset to /0. A list of length n incurs cost O(1) for creation, element
addition, and emptiness check as well as O(n) for iterating over all of its elements. The vertex v2 in the
main partition is stored in a designated variable; the vertices LV -labeled with clauses in Cuc in the main
partition are stored in a list.

We proceed as follows. (i) As preparation we reverse all edges in the subgraph G′. (ii) We turn the
subgraph G′ into a unary NFA5 by treating all edges6 LE ′-labeled with 0 as ε-transitions and applying a
standard method for elimination of ε-transitions in NFA [HU79]. That leaves us with a NFA with only
1-LE ′-labeled transitions, i.e., a unary NFA. (iii) We initialize the sets of time points. (iv) We use an
algorithm by Gawrychowski [Gaw11] extended to handle all final vertices in parallel to compute Parikh
images.

Preparation Reversing all edges in the subgraph G′ can be performed in time O(|V ′|+ |E ′|).

Turning G′ into a Unary NFA (i) Designate v2 as the initial vertex: O(1). (ii) For each vertex
compute the set of vertices reachable from that vertex via a sequence of 0-LE ′-labeled edges. This can be
done, e.g., by using DFS from each vertex: O(|V ′| · (|V ′|+ |E ′|)). (iii) For each vertex compute the set
of vertices reachable from that vertex via a 1-L′V ′-labeled edge followed by a sequence of 0-LE ′-labeled
edges: O(|V ′|2 + |V ′| · |E ′|). (iv) For each vertex compute the set of vertices reachable from that vertex
via a sequence of 0-LE ′-labeled edges, followed by a 1-L′V ′-labeled edge, and followed by a sequence
of 0-LE ′-labeled edges: O(|V ′|3). (v) Replace the set of edges E ′ with the edges such that there is one
1-L′V ′-labeled edge for each pair of vertices v,v′ where v′ is reachable from v via a sequence of edges as
in the previous step. Call the new set of edges E ′′: O(|V ′|+ |E ′|+ |E ′′|). The overall cost for turning G′

into a unary NFA is, therefore, O(|V ′|3 + |V ′| · (|V ′|+ |E ′|)+ |E ′′|).

Initializing Sets of Time Points Initialize all sets of time points with /0 and then add 0 to those of
clauses in Cuc that are labeling vertices in the main partition reachable via a sequence of 0-LE ′-edges
from v2. The required information is available from the conversion to a unary NFA. This can be done in
time O(|C|).

5A unary NFA is a NFA over a unary alphabet.
6We use the terms “vertex” and “state” as well as “edge” and “transition” interchangeably.
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Computing Parikh Images Extending Gawrychowski’s algorithm [Gaw11] to handle multiple final
vertices in parallel is straightforward. Essentially, when the original algorithm checks whether a single
final vertex has been reached, the extended version carries out that check for each final vertex. To
illustrate how the Parikh images can be computed in time O(|V ′|3 + |C| · |V ′|2) we show the main part of
the algorithm in Alg. 2–4. For an explanation of how it works see [Gaw11].

The first part (Alg. 2) is mostly preparation. It partitions the unary NFA into SCCs and computes the
length of the shortest loop in each SCC. This can be done, e.g., using Tarjan’s algorithm [Tar72] and then
using BFS from each vertex. The overall cost for preparation is O(|V ′| · (|V ′|+ |E ′′|)). The second part
(Alg. 3) processes non-trivial SCCs. It can be carried out in time O(|V ′|3 + |C| · |V ′|2). It is important
to note that the sum of the sizes of all SCCs is bounded by the number of vertices V ′. Moreover, each
vertex can appear in each of the 2d frontiers only once per SCC. The third part (Alg. 4) processes trivial
SCCs. It can be carried out in time O(|E ′′|+ |C| · |V ′|+ |V ′|2). Hence, the overall time to compute Parikh
images is O(|V ′|3 + |C| · |V ′|2).

Summing Up The time taken for all steps is bounded by O(|V ′|3 + |C| · |V ′|2). This concludes the
proof.

Theorem 4 (Unsatisfiability of UC in LTL with Sets of Time Points). Let φ be an unsatisfiable LTL
formula, and let θ ′uc be the UC of φ in LTL with sets of time points. Then θ ′uc is unsatisfiable.

Proof. Let SNF(φ) be the SNF of φ , let Cuc be the UC of SNF(φ) in SNF, and let θ uc be the UC of
SNF(φ) in SNF with sets of time points.

Translate the UC in LTL with set of time points, θ ′uc, into an SNF formula θ ′ with sets of time points
as follows. First, obtain a formula in SNF (without sets of time points) by translating θ ′uc according
to Def. 3 (disregarding sets of time points in θ ′uc). Then assign {0} as a set of time points to all outer
conjunctions. Finally, assign each clause a set of time points (see Def. 9) as detailed next.

Assign the set of time points {0} to xθ ′uc . For each occurrence of a subformula ψ in θ ′uc, denote the
set of time points assigned to ψ in θ ′uc with Iψ . Let xψ ,xψ ′ , . . . be the occurrences of propositions in a
clause c that are marked blue boxed in Tab. 3 and that refer to occurrences of subformulas ψ,ψ ′, . . . in
θ ′uc.

• If the clause c comes from translating a ¬, ∧, or ∨ subformula, then assign c the set of time points
Iψ ∪ Iψ ′ ∪ . . ..

• If the clause c comes from translating a X subformula, then assign c the set of time points Iψ −1.

• If the clause c comes from a positive polarity occurrence of a F subformula or a negative polarity
occurrence of a G subformula, then assign c the set of time points Iψ .

• If the clause c comes from a positive polarity occurrence of a G subformula or a nega-
tive polarity occurrence of a F subformula, then assign a clause c = (G(xGψ → (XxGψ))) or
c = (G((¬xFψ)→ (X¬xFψ))) the set of time points N and a clause c = (G(xGψ → xψ)) or
c = (G((¬xFψ)→ (¬xψ))) the set of time points Iψ .

• If the clause c comes from a positive polarity occurrence of a U subformula or a nega-
tive polarity occurrence of a R subformula, then assign a clause c = (G(xψUψ ′ → (xψ ′ ∨ xψ)))
or c = (G((¬xψRψ ′)→ ((¬xψ ′)∨ (¬xψ)))) the set of time points Iψ , a clause c =
(G(xψUψ ′ → (xψ ′ ∨ (XxψUψ ′)))) or c = (G((¬xψRψ ′)→ ((¬xψ ′)∨ (X¬xψRψ ′)))) the set of time
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points Iψ ′ , and a clause c = (G(xψUψ ′ → (Fxψ ′))) or c = (G((¬xψRψ ′)→ (F¬xψ ′))) the set of
time points Iψ ′ .

• If the clause c comes from a negative polarity occurrence of a U subformula
or a positive polarity occurrence of a R subformula, then assign a clause c =
(G((¬xψUψ ′)→ (¬xψ ′))) or c = (G(xψRψ ′ → xψ ′)) the set of time points Iψ ′ and a clause
c = (G((¬xψUψ ′)→ ((¬xψ)∨ (X¬xψUψ ′)))) or c = (G(xψRψ ′ → (xψ ∨ (XxψRψ ′)))) the set of
time points Iψ .

Note that in the first three cases as well as in the last case this is an exact reversal of Def. 11, while in the
remaining cases this is a potentially inexact reversal of Def. 11 as at least one set of time points may be
larger than that of the corresponding clause in θ uc.

As in the proof of Thm. 2 (see [Sch12a]) θ ′ contains a superset of the clauses of θ uc if sets of time
points are disregarded. Moreover, by construction, the sets of time points in θ ′ are supersets of the sets
of time points in θ uc. Hence, provided the translation from θ ′uc into θ ′ is satisfiability preserving, with
Lemma 5, we have that θ ′uc is unsatisfiable.

It is now left to show that the translation from θ ′uc into θ ′ preserves satisfiability. Assume a satisfying
assignment π for θ ′uc. Extend π to a satisfying assignment π ′ for θ ′ as follows: For each occurrence of a
subformula τ in θ ′uc that is not a Boolean constant or an atomic proposition introduce a fresh proposition
xτ and assign it the truth values of τ in θ ′uc on the satisfying assignment according to Def. 6. It is easy
to see that (π ′,0) fulfills xθ uc . The fact that π ′ is a satisfying assignment for the remaining clauses of θ ′

follows from the semantics of LTLp.
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Algorithm 2: Gawrychowski’s algorithm extended to handle multiple final vertices in parallel. Preparation.
Partition A into SCCs;1
foreach SCC A do2

Find the length of the shortest loop in A;3
Create an empty set of vertices sforbidden;4
Create a list of vertices lfinal and assign it the list of vertices LV -labeled with clauses in Cuc ;5

Algorithm 3: Gawrychowski’s algorithm extended to handle multiple final vertices in parallel. Processing non-trivial SCCs.
foreach SCC A do1

d← length of the shortest loop in A;2
Create a set of vertices scurrentscc and a list of vertices lcurrentscc;3
scurrentscc← vertices of A; lcurrentscc← vertices of A;4
foreach 0≤ i < d do5

Create empty sets of vertices simage0,i , sreached0,i , sfrontier0,i;6
Create empty sets of vertices simage1,i , sreached1,i , sfrontier1,i;7
Create empty lists of vertices limage0,i , lfrontier0,i , limage1,i , lfrontier1,i;8
Create an empty set of vertices sfinalseeni;9

sreached0,0 ← sfrontier0,0 ←{v2};10
lfrontier0,0 ← [v2];11
i← 0;12
while (lfrontier0,i mod d 6= [])∨ (lfrontier1,i mod d 6= []) do13

im ← i mod d;14
im,next ← (i+1) mod d;15
simage0,im,next ← sfrontier0,im,next ← simage1,im,next ← sfrontier1,im,next ← /0;16
limage0,im,next ← lfrontier0,im,next ← limage1,im,next ← lfrontier1,im,next ← [];17
foreach v ∈ lfrontier0,im do18

foreach target vertex v′ of each outgoing edge of v do19
if v′ ∈ sforbidden then continue;20
if v′ ∈ scurrentscc then21

if v′ 6∈ simage1,im,next then22
simage1,im,next ← simage1,im,next ∪{v

′};23
limage1,im,next ← limage1,im,next ◦ [v

′];24
else25

if v′ 6∈ simage0,im,next then26
simage0,im,next ← simage0,im,next ∪{v

′};27
limage0,im,next ← limage0,im,next ◦ [v

′];28

foreach v ∈ limage0,im,next do29
if v 6∈ sreached0,im,next then30

sreached0,im,next ← sreached0,im,next ∪{v};31
sfrontier0,im,next ← sfrontier0,im,next ∪{v};32
lfrontier0,im,next ← lfrontier0,im,next ◦ [v];33

foreach v ∈ lfrontier1,im do34
foreach target vertex v′ of each outgoing edge of v do35

if v′ ∈ sforbidden then continue;36
if v′ 6∈ simage1,im,next then37

simage1,im,next ← simage1,im,next ∪{v
′};38

limage1,im,next ← limage1,im,next ◦ [v
′];39

foreach v ∈ limage1,im,next do40
if v 6∈ sreached1,im,next then41

sreached1,im,next ← sreached1,im,next ∪{v};42
sfrontier1,im,next ← sfrontier1,im,next ∪{v};43
lfrontier1,im,next ← lfrontier1,im,next ◦ [v];44

foreach v ∈ lfinal do45
if (v 6∈ sfinalseenim,next )∧ (v ∈ sfrontier1,im,next ) then46

Add d·N+ i+1 to the Parikh image of LV (v);47
sfinalseenim,next ← sfinalseenim,next ∪{v};48

i← i+1;49
foreach v ∈ lcurrentscc do50

sforbidden← sforbidden∪{v};51
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Algorithm 4: Gawrychowski’s algorithm extended to handle multiple final vertices in parallel. Processing trivial SCCs.
Create a set of vertices scurr; scurr←{v2};1
Create an empty set of vertices snext;2
Create a list of vertices lcurr; lcurr← [v2 ];3
Create an empty list of vertices lnext;4
i← 0;5
while lcurr 6= [] do6

foreach v ∈ lcurr do7
foreach target vertex v′ of each outgoing edge of v do8

if v′ ∈ sforbidden then continue;9
if v′ 6∈ snext then10

snext← snext∪{v′};11
lnext← lnext ◦ [v′];12

foreach v ∈ lfinal do13
if v ∈ snext then14

Add 0·N+ i+1 to the Parikh image of LV (v);15

scurr← snext; snext← /0;16
lcurr← lnext; lnext← [];17
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C Additional Examples

C.1 An Example of Disjuncts of an Invariant Holding at Different Time Points

This example (16) is based on a subset of the specification of a buffer [Blo+07]. The subset regu-
lates the communication between a sender and the buffer, where the sender can issue requests to the
buffer (StoB REQ0) and the buffer can acknowledge requests to the sender (BtoS ACK0). For details see
[Blo+07].

(¬StoB REQ0)∧ (¬BtoS ACK0) (16a)
∧ (G((StoB REQ0∧¬BtoS ACK0)→ XStoB REQ0)) (16b)
∧ (G(BtoS ACK0→ X¬StoB REQ0)) (16c)
∧ (GF((StoB REQ0∧BtoS ACK0)∨ ((¬StoB REQ0)∧ (¬BtoS ACK0)))) (16d)
∧ (G(((¬StoB REQ0)∧XStoB REQ0)→ X¬BtoS ACK0)) (16e)
∧ (G(((¬BtoS ACK0)∧XBtoS ACK0)→ StoB REQ0)) (16f)
∧ (G((BtoS ACK0∧StoB REQ0)→ XBtoS ACK0)) (16g)

The engineer considers a scenario where a request is sent every fourth time point (17a), (17b). In this
scenario she would like to verify an invariant (17c)–(17f). Not only does the invariant turn out to hold,
but the excerpt of the UC (18a)–(18d) shows that each disjunct of the invariant holds every fourth time
point.

(Xtick)∧ (G(tick→ XXXXtick)) (17a)
∧ (G((tick→ StoB REQ0)∧ ((Xtick)→ (¬StoB REQ0)))) (17b)
∧ (¬(G((StoB REQ0∧¬BtoS ACK0) (17c)

∨ (StoB REQ0∧BtoS ACK0) (17d)
∨ ((¬StoB REQ0)∧BtoS ACK0) (17e)
∨ (Xtick)))) (17f)

(¬
N
(G
N
((StoB REQ0 ∧

{4·N+1},{4·N+1}
¬

{4·N+1}
BtoS ACK0) (18a)

∨
{4·N+1},{4·N+0,4·N+2,4·N+3}

((StoB REQ0 ∧
{4·N+2},{4·N+2}

BtoS ACK0) (18b)

∨
{4·N+2},{4·N+0,4·N+3}

((( ¬
{4·N+3}

StoB REQ0) ∧
{4·N+3},{4·N+3}

BtoS ACK0) (18c)

∨
{4·N+3},{4·N+0}

( X
{4·N+1}

tick)))))) (18d)

C.2 An Example from the Business Process Domain

The following example (19) shows applicability and utility of our approach in the business process do-
main. It is based on example 3 in [HHT11]. We changed (19c) from F(i∧nr) to its current form, as this
yields more interesting sets of time points, and we omitted the last constraint in [HHT11], as it is the
most complicated yet does not contribute to what we would like to illustrate.

We restate the (slightly adapted) explanation from [HHT11]. (19a): An order (o) must occur. (19b):
A payment (p) with non-repudiation (nr) must occur. (19c): An insurance submission (i) with non-
repudiation must occur at time point 5. (19d): A goods delivery (g) must occur. (19e): Insurance before
payment (p) is forbidden. (19f): If a payment occurs, it must occur at least three time points after the
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order. (19g): Goods delivery before payment is forbidden. (19h): If an insurance submission occurs,
it must occur either at the time point of the order or one time point later. And (19i): A golden (gold)
customer must have goods delivered no later than three time points after the time point at which the
payment is accomplished.

(Fo) (19a)

∧ (F(p∧nr)) (19b)

∧ (XXXXX(i∧nr)) (19c)

∧ (Fg) (19d)

∧ ((¬i)Wp) (19e)

∧ ((¬p)W(o∧ (¬p)∧ (X¬p)∧ (XX¬p))) (19f)

∧ ((¬g)Wp) (19g)

∧ (G(o→ XXG¬i)) (19h)

∧ (gold→ (G(p→ (g∨ (Xg)∨ (XXg)∨ (XXXg))))) (19i)

The UC with sets of time points in (20) consists of parts of (19c), (19e), (19f), and, (19h). We
abbreviate the interval of time points from a to b (inclusive) as [a,b]. (20a) prescribes that i is 1 at time
point 5. With (20b) this implies that p must become 1 between time points 0 and 5. Moreover, with
(20d) o must be 0 from time point 0 to 3. Note, though, that the annotation of (20d) with sets of time
points tells us that o having to be 0 matters only between time points 0 and 2. (20c) demands that at or
before the time point at which p becomes 1 the right operand of its W operator becomes 1. This operand
becoming 1 cannot happen between time points 0 and 2, as that would imply o being 1 at one of those
time points. On the other hand, if it were to happen between time points 3 and 5, one of the conjuncts
¬p, X¬p, or XX¬p would prevent p from being 1 at or before time point 5. Hence, (20) is unsatisfiable.

( X
{1}

X
{2}

X
{3}

X
{4}

X
{5}

(i ∧
{5}, /0

1)) (20a)

∧
{0},{0}

(( ¬
{5}

i) W
{5},[0,5]

p) (20b)

∧
{0},{0}

(( ¬
[0,5]

p) W
[0,5],[0,5]

(o ∧
[0,2],[0,5]

(( ¬
[0,5]

p) ∧
[0,5],{3,4}

(( X
{4,5}

¬
{4,5}

p) ∧
{3,4},{3}

( X
{4}

X
{5}
¬
{5}

p))))) (20c)

∧
{0},{0}

( G
[0,2]

(o →
[0,2],[0,2]

X
[1,3]

X
[2,4]

G
{5}
¬
{5}

i)) (20d)

(20) is the UC we obtained with our implementation. It shows that extracting UCs from proofs does
not necessarily lead to minimal ([Sch12b]: irreducible) or minimum ([Sch12b]: least-cost irreducible)
UCs. Consider the variant of (20) with sets of time points removed. While this variant is a UC of (19)
without sets of time points, it is not minimal: the last conjunct XX¬p in (20c) could be replaced with
1 without making the result satisfiable. In (20) with sets of time points as shown above that subfor-
mula is required for unsatisfiability. However, ∧

[0,2],[0,5]
(( ¬

[0,5]
p) ∧

[0,5],{3,4}
in (20c) could be replaced with

∧
[0,2],[3,5]

(( ¬
[3,5]

p) ∧
[3,5],{3,4}

without sacrificing unsatisfiability.
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D Additional Plots

Figure 4 shows the overhead that is incurred by extracting UCs with sets of time points by category.
Figure 5 compares Gawrychowski’s and Sawa’s algorithm for computing sets of time points by category.
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Figure 4: Overhead incurred by UC extraction in terms of run time (in seconds) and memory (in MB)
separated by categories application, crafted, and random. In each graph extraction of UCs with time
points using Gawrychowski’s algorithm is on the y-axis and UC extraction without sets of time points is
on the x-axis. The off-center diagonal shows where y = 2x.
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Figure 5: Comparison of using Sawa’s algorithm (y-axis) versus Gawrychowski’s algorithm (x-axis) for
extracting UCs with sets of time points in terms of run time (in seconds) and memory (in MB) separated
by categories application, crafted, and random.
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