
L. Bortolussi and H. Wiklicky (Eds.): QAPL 2013
EPTCS 117, 2013, pp. 49–65, doi:10.4204/EPTCS.117.4

c© V. Schuppan
This work is licensed under the Creative Commons
Attribution-Share Alike License.

Enhancing Unsatisfiable Cores for LTL with Information on
Temporal Relevance

Viktor Schuppan
Viktor.Schuppan@gmx.de

LTL is frequently used to express specifications in many domains such as embedded systems or
business processes. Witnesses can help to understand why an LTL specification is satisfiable, and
a number of approaches exist to make understanding a witness easier. In the case of unsatisfiable
specifications unsatisfiable cores (UCs), i.e., parts of an unsatisfiable formula that are themselves
unsatisfiable, are a well established means for debugging. However, little work has been done to help
understanding a UC of an unsatisfiable LTL formula. In this paper we suggest to enhance a UC of an
unsatisfiable LTL formula with additional information about the time points at which the subformulas
of the UC are relevant for unsatisfiability. For example, in (Gp)∧ (X¬p) the first occurrence of p
is really only “relevant” for unsatisfiability at time point 1 (time starts at time point 0). We present
a method to extract such information from the resolution graph of a temporal resolution proof of
unsatisfiability of an LTL formula. We implement our method in TRP++, and we experimentally
evaluate it. Source code of our tool is available.

1 Introduction

LTL and its relatives are important specification languages for reactive systems (e.g., [16]) and for busi-
ness processes (e.g., [29]). Experience in verification (e.g., [7]) and in synthesis (e.g., [10]) has lead to
specifications themselves becoming objects of analysis. Typically, a specification is expected to be sat-
isfiable. If it turns out to be unsatisfiable, finding a reason for unsatisfiability can help with the ensuing
debugging. Given the sizes of specifications of real world systems (e.g., [11]) automated support for
determining a reason for unsatisfiability of a specification is crucial. Frequently, such reason for unsatis-
fiability is taken to be a part of the unsatisfiable specification that is by itself unsatisfiable; this is called
an unsatisfiable core (UC) (e.g., [36, 5]).

Less simplistic ways to examine an LTL specification φ exist [30], and understanding their results
also benefits from availability of UCs. First, one can ask whether a certain scenario φ ′, given as an LTL
formula, is permitted by φ . That is the case iff φ ∧ φ ′ is satisfiable. Second, one can check whether φ

ensures a certain LTL property φ ′′. φ ′′ holds in φ iff φ ∧¬φ ′′ is unsatisfiable. In the first case, if the
scenario turns out not to be permitted by the specification, a UC can help to understand which parts of
the specification and the scenario are responsible for that. In the second case a UC can show which parts
of the specification imply the property. Moreover, if there are parts of the property that are not part of
the UC, then those parts of the property could be strengthened without invalidating the property in the
specification; i.e., the property is vacuously satisfied (e.g., [7]).

Trying to help users to understand counterexamples in verification, which are essentially witnesses to
a satisfiable formula, is a well established research topic (see, e.g., [6] for some references). In particular,
it is common to add information to a counterexample on which parts of a counterexample are relevant
at which points in time (e.g., [31, 6]). According to [6] such explanations are an integral part of every
counterexample trace in IBM’s verification platform RuleBase PE. Checks for vacuous specifications,
which are closely related to UCs [36], are an important feature of industrial hardware verification tools

http://dx.doi.org/10.4204/EPTCS.117.4
http://creativecommons.org
http://creativecommons.org/licenses/by-sa/3.0/

50 Enhancing Unsatisfiable Cores for LTL with Information on Temporal Relevance

(see, e.g., [7, 3]). In the academic world UCs are an important part of design methods for embedded
systems (e.g., [30]) as well as for business processes (e.g., [4]). Despite this relevance of UCs efforts to
provide additional information in the context of UCs or vacuity have remained isolated (e.g., [38]).

In this paper we suggest to enhance UCs for LTL with information on the time points at which its
subformulas are relevant for unsatisfiability. As illustration we discuss the example from the abstract in
more detail, shown in (1) again. When (1) is evaluated on some word π according to standard semantics
of LTL (see Sec. 2), (1) and both of its conjuncts, Gp and X¬p, are evaluated at time point 0 (time
starts at time point 0), the operand of the G operator, p, is evaluated at all time points in N, and the
operand of the X operator, ¬p, as well as its operand, p, are evaluated at time point 1. We can include
this information into (1) by writing the set of time points at which an operand is evaluated directly below
the corresponding operator. Note that in this scheme there is no place for the set of time points at which
(1) itself is evaluated; however, (1) (as any LTL formula) will always be evaluated only at time point 0,
so this need not be spelled out explicitly. We then obtain (2). It is easy to see that (1) evaluates to 0 on
any word π , i.e., it is unsatisfiable. The reason for this is that at time point 1 p would have to be 1 in the
first conjunct Gp and 0 in the second conjunct X¬p. Notice that for this to happen the operand of Gp, p,
needs to be evaluated only at time point 1; it is immaterial at any other time point. We can include this
information into (2) by replacing N below G with {1}, obtaining (3). (3) can be seen as a UC of (1).

(Gp)∧ (X¬p) (1) (G
N

p) ∧
{0},{0}

(X
{1}
¬
{1}

p) (2) (G
{1}

p) ∧
{0},{0}

(X
{1}
¬
{1}

p) (3)

In this paper we make the following contributions. (i) We suggest to enhance UCs for LTL with in-
formation on the time points at which the subformulas of a UC are relevant for unsatisfiability, leading to
a more fine-grained notion of UCs for LTL than [36]. (ii) We propose a method to obtain that information
from a temporal resolution proof of unsatisfiability of an LTL formula. (iii) We implement our method in
TRP++, and we experimentally evaluate it. We are not aware of any other tool that performs extraction of
UCs for propositional LTL at that level of granularity. We make the source code of our solver available.
Conceptually, under the frequently legitimate assumption that a system description can be translated into
an LTL formula, our results extend to vacuity for LTL.

Besides debugging as outlined above UCs are also used for avoiding the exploration of parts of a
search space that can be known not to contain a solution for reasons “equivalent” to the reasons for pre-
vious failures (e.g., [12]). While our results might also benefit that application, we focus on debugging.

Temporal resolution [19] lends itself as a basis for enhancing UCs for LTL with information on
temporal relevance for two reasons. First, the temporal resolution-based solver TRP++ [24, 25, 1] proved
to be competitive in a recent evaluation of solvers for LTL satisfiability, in particular on unsatisfiable
instances [37]. Second, a temporal resolution proof naturally induces a resolution graph [35], which
provides a clean framework for extracting information from the proof.

In this paper we use the following notion of relevance. Assume an LTL formula φ and a temporal
resolution proof of its unsatisfiability. Remove those parts of the proof that did not contribute to proving
unsatisfiability. Consider what is left to be relevant for unsatisfiability; this includes not only which
subformulas of φ are used but also the time points at which they are used. Clearly, this notion of relevance
may not lead to results of minimal or minimum relevance: the fact that some part of φ is used at some
time point in a specific proof of the unsatisfiability of φ does not mean that all such proofs will use that
part of φ at that time point. For other notions of relevance see, e.g., [31, 6]. The reasons for using our
notion of relevance are pragmatic. First, this notion of relevance can be computed with little overhead
from a proof of unsatisfiability, which is assumed to be carried out anyway. Second, the result of our
notion of relevance can serve as an already reduced input to some of the other notions.

Simmonds et al. [38] use SAT-based bounded model checking for vacuity detection. They indicate

V. Schuppan 51

which time points are relevant for showing that a variable is non-vacuous. They only consider k-step
vacuity, i.e., taking into account bounded model checking runs up to a bound k, and leave the problem
of removing the bound k open. [36] mentions indicating time points at which subformulas of a UC in
LTL are relevant for unsatisfiability. The idea is not formalized. It first appears in the context of a UC
extraction algorithm that is complete only for a strict subset of LTL. Later [36] proposes example (4)
and conjectures that sets of time points can be obtained from a tableau method and that these sets are
semilinear. Some work [31, 6] determines the time points at which propositions in witnesses of satisfiable
LTL formulas are relevant for satisfiability.

This paper builds on a fair amount of previous work: we use temporal resolution as implemented in
TRP++ [19, 24, 25, 1] and its extension to extract UCs [35]. To make this paper self-contained we provide
a concise description of both. However, to allow sufficient room for the contributions of this paper we
have to limit the amount of explanation for previous work. Temporal resolution has been developed
since the early 1990s [18], and we refer to [19] for a general overview, to [15, 14, 13] for details on loop
search, and to [24, 25, 1] for the implementation in TRP++. In [35] we provide some intuition on temporal
resolution with a slant towards BDD-based symbolic model checking. Finally, we refer to Sec. 4 for an
example of an execution of the temporal resolution algorithm and the corresponding extraction of UCs.

Section 2 starts with preliminaries. Temporal resolution and its clausal normal form SNF are intro-
duced in Sec. 3. In Sec. 4 we restate the construction of a resolution graph and its use to obtain a UC
from [35]. This is extended to compute time points at which subformulas are relevant for unsatisfiability
in Sec. 5, 6. A number of examples are spread throughout the paper; in Sec. 7 we provide an example
close to a real world situation. We discuss our implementation and experimental evaluation in Sec. 8.
Section 9 concludes. Due to space constraints some proofs are sketched or omitted. For the full version
of this paper [34] including proofs and for our implementation, examples, and log files see [2].

2 Preliminaries

LetN be the naturals, and let I ⊆N be a set of naturals. I is linear iff there exist two naturals p (period)
and o (offset) such that I = p·N+o. I is semilinear iff it is the union of finitely many linear sets. Let Σ be
a finite alphabet, σ ∈ Σ a letter in Σ, L⊆ Σ∗ a language over Σ, and w ∈ L a word in L. Define a function
from words and letters to naturals Ψ : Σ∗×Σ→N,(w,σ) 7→m where m is the number of occurrences of
σ in w. Ψ is called Parikh mapping and Ψ(w,σ) is called the Parikh image of σ in w. The Parikh image
of a set of words W is defined in the natural way: Ψ(W,σ) = {Ψ(w,σ) | w ∈W}. Parikh’s theorem [28]
states that for every context-free language L, for every letter σ , the Parikh image Ψ(L,σ) is semilinear.

We use a standard version of LTL, see, e.g., [17]. Let B be the set of Booleans, and let AP be a finite
set of atomic propositions. The set of LTL formulas is constructed inductively as follows. The Boolean
constants 0 (false), 1 (true) ∈B and any atomic proposition p ∈ AP are LTL formulas. If ψ , ψ ′ are LTL
formulas, so are ¬ψ (not), ψ∨ψ ′ (or), ψ∧ψ ′ (and), Xψ (next time), ψUψ ′ (until), ψRψ ′ (releases), Fψ

(finally), and Gψ (globally). We use ψ→ψ ′ (implies) as an abbreviation for ¬ψ∨ψ ′. For the semantics
of LTL see Tab. 1. An occurrence of a subformula ψ of an LTL formula φ has positive polarity (+) if it
appears under an even number of negations in φ and negative polarity (−) otherwise.

3 Temporal Resolution (TR) in TRP++

TR works on formulas in a clausal normal form called separated normal form (SNF) [19]. For any
atomic proposition p ∈ AP p and ¬p are literals. Let p1, . . . ,pn, q1, . . . ,qn′ , l with 0 ≤ n,n′ be literals

52 Enhancing Unsatisfiable Cores for LTL with Information on Temporal Relevance

(π, i) |= 1, 6|= 0 (π, i) |= p ⇔ p ∈ π[i]
(π, i) |= ¬ψ ⇔ (π, i) 6|= ψ (π, i) |= Xψ ⇔ (π, i+1) |= ψ

(π, i) |= ψ ∨ψ ′ ⇔ (π, i) |= ψ or (π, i) |= ψ ′ (π, i) |= ψ ∧ψ ′ ⇔ (π, i) |= ψ and (π, i) |= ψ ′

(π, i) |= ψUψ ′ ⇔ ∃i′ ≥ i . ((π, i′) |= ψ ′ ∧∀i≤ i′′ < i′ . (π, i′′) |= ψ) (π, i) |= ψRψ ′ ⇔ ∀i′ ≥ i . ((π, i′) |= ψ ′ ∨∃i≤ i′′ < i′ . (π, i′′) |= ψ)
(π, i) |= Fψ ⇔ ∃i′ ≥ i . (π, i′) |= ψ (π, i) |= Gψ ⇔ ∀i′ ≥ i . (π, i′) |= ψ

Table 1: Semantics of LTL. π is a word in (2AP)ω , i is a time point in N. π satisfies φ iff (π,0) |= φ .

rule premise 1 part. premise 2 part. conclusion part. p.1 – c t.s. 1 p.2 – c t.s. 2 vt. c

saturation

init-ii (P∨ l) M (¬l∨Q) M (P∨Q) M 4 6 4 6 4

init-in (P∨ l) M (G(¬l∨Q)) M (P∨Q) M 4 6 4 6 4

step-nn (G(P∨ l)) M (G(¬l∨Q)) M (G(P∨Q)) M 4 6 4 6 4

step-nx (G(P∨ l)) M (G((Q)∨ (X(¬l∨R)))) M (G((Q)∨ (X(P∨R)))) M 4 4 4 6 4

step-xx (G((P)∨ (X(Q∨ l)))) ML (G((R)∨ (X(¬l∨S)))) ML (G((P∨R)∨ (X(Q∨S)))) ML 4 6 4 6 4

augmentation

aug1 (G((P)∨ (F(l)))) M (G(P∨ l∨wl)) M 4 6 — — 4

aug2 (G((P)∨ (F(l)))) M (G((¬wl)∨ (X(l∨wl)))) M 6 6 — — 4

BFS loop search

BFS-loop-it-init-x c≡ (G((P)∨ (X(Q)))) with |Q|> 0 M c L 4 6 — — 4

BFS-loop-it-init-n (G(P)) M (G((0)∨ (X(P)))) L 4 4 — — 4

BFS-loop-it-init-c (G(P)) L′ (G((Q)∨ (F(l)))) M (G((0)∨ (X(P∨ l)))) L 6 6 6 6 4

BFS-loop-it-sub c≡(G(P)) with c→ (G(Q)) L (G((0)∨ (X(Q∨ l)))) generated by BFS-loop-it-init-c L 4 4 — — 6

BFS-loop-conclusion1 (G(P)) L (G((Q)∨ (F(l)))) M (G(P∨Q∨ l)) M 4 6 4 6 4

BFS-loop-conclusion2 (G(P)) L (G((Q)∨ (F(l)))) M (G((¬wl)∨ (X(P∨ l)))) M 4 4 6 6 4

Table 2: Production rules in TRP++. Let P≡
∨

i=1...n pi, Q≡
∨

i=1...n′ qi, R≡
∨

i=1...n′′ ri, S≡
∨

i=1...n′′′ si.

such that p1, . . . ,pn and q1, . . . ,qn′ are pairwise different. Then (i) (p1∨ . . .∨pn) is an initial clause;
(ii) (G((p1 ∨ . . .∨pn)∨ (X(q1∨ . . .∨qn′)))) is a global clause; and (iii) (G((p1∨ . . .∨pn)∨ (F(l)))) is
an eventuality clause. l is called an eventuality literal. As usual an empty disjunction (resp. conjunction)
stands for 0 (resp. 1). () or (G()), denoted 2, stand for 0 or G(0) and are called empty clause. The set
of all SNF clauses is denoted C. Let c1, . . . ,cn with 0 ≤ n be SNF clauses. Then

∧
1≤i≤n ci is an LTL

formula in SNF. Every LTL formula φ can be transformed into an equisatisfiable formula φ ′ in SNF [19].
We now describe TR [19] as implemented in TRP++ [24, 25, 1]. The production rules of TRP++ are

shown in Tab. 2. The first column assigns a name to a production rule. The second and fourth columns
list the premises. The sixth column gives the conclusion. Columns 3, 5, and 7 are described below.
Columns 8–12 become relevant only in later sections.

Algorithm 1 provides a high level view of TR in TRP++ [25]. The algorithm takes a set of starting
clauses C in SNF as input. It returns unsat if C is found to be unsatisfiable (by deriving 2) and sat
otherwise. Resolution between two initial or two global clauses or between an initial and a global clause
is performed by a simple extension of propositional resolution. The corresponding production rules are
listed under saturation in Tab. 2. Given a set of SNF clauses C we say that one saturates C if one applies
these production rules to clauses in C until no new clauses are generated. Resolution between a set of
initial and global clauses and an eventuality clause with eventuality literal l requires finding a set of
global clauses that allows to infer conditions under which XG¬l holds. Such a set of clauses is called a
loop in ¬l. Loop search involves all production rules in Tab. 2 except init-ii , init-in , step-nn , and step-nx .

In line 1 Alg. 1 initializes M with the set of starting clauses and terminates iff one of these is the
empty clause. Then, in line 2, it saturates M (terminating iff the empty clause is generated). In line
3 it augments M by applying production rule aug1 to each eventuality clause in M and aug2 once per
eventuality literal in M, where wl is a fresh proposition. This is followed by another round of saturation
in line 4. From now on Alg. 1 alternates between searching for a loop for some eventuality clause c
(lines 9–18) and saturating M if loop search has generated new clauses (line 19). It terminates if either
the empty clause was derived (line 19) or if no new clauses were generated (line 20).

V. Schuppan 53

Algorithm 1: LTL satisfiability checking via TR in TRP++.

Input: A set of SNF clauses C. Output: Unsat if C is unsatisfiable; sat otherwise.

M←C; if 2 ∈M then return unsat;1
saturate(M); if 2 ∈M then return unsat;2
augment(M);3
saturate(M); if 2 ∈M then return unsat;4
M′← /0;5
while M′ 6= M do6

M′←M;7
for c ∈C . c is an eventuality clause do8

C′←{2};9
repeat10

initialize-BFS-loop-search-iteration(M, c, C′, L);11
saturate-step-xx(L);12
C′←{c′ ∈ L | c′ has empty X part};13
C′′←{(G(Q)) | (G((0)∨ (X(Q∨ l)))) ∈ L generated by BFS-loop-it-init-c };14
f ound← subsumes(C′,C′′);15

until found or C′ = /0 ;16
if found then17

derive-BFS-loop-search-conclusions(c, C′, M);18
saturate(M); if 2 ∈M then return unsat;19

return sat;20

Loop search for some eventuality clause c may take several iterations (lines 11–15). Each loop
search iteration uses saturation restricted to step-xx as a subroutine (line 12). Therefore, each loop search
iteration has its own set of clauses L in which it works. We call M and L partitions. Columns 3, 5, and 7
in Tab. 2 indicate whether a premise (resp. conclusion) of a production rule is taken from (resp. put into)
the main partition (M), the loop partition of the current loop search iteration (L), the loop partition of
the previous loop search iteration (L′), or either of M or L as long as premises and conclusion are in the
same partition (ML). In line 11 partition L of a loop search iteration is initialized by applying production
rule BFS-loop-it-init-x once for each global clause with non-empty X part in M, rule BFS-loop-it-init-n once
for each global clause with empty X part in M, and rule BFS-loop-it-init-c once for each global clause with
empty X part in the partition of the previous loop search iteration L′. Notice that by construction at this
point L contains only global clauses with non-empty X part. Then L is saturated using only rule step-xx

(line 12). A loop has been found iff each global clause with empty X part that was derived in the previous
loop search iteration is subsumed by at least one global clause with empty X part that was derived in the
current loop search iteration (lines 13–15). Subsumption between a pair of clauses corresponds to an
instance of production rule BFS-loop-it-sub ; note, though, that this rule does not produce a new clause
but records a relation between two clauses to be used later for extraction of a UC. Loop search for c
terminates, if either a loop has been found or no clauses with empty X part were derived (line 16). If
a loop has been found, rules BFS-loop-conclusion1 and BFS-loop-conclusion2 are applied once to each global
clause with empty X part that was derived in the current loop search iteration (line 18) to obtain the loop
search conclusions for the main partition.

4 UC Extraction via TR

In this section we restate the main definitions from [35] that show how to construct UCs via TR. Then we
present an example for extraction of a UC in SNF, which is extended with sets of time points in Sec. 6.

Given an unsatisfiable set of SNF clauses C we would first like to obtain a subset of C, Cuc, that is

54 Enhancing Unsatisfiable Cores for LTL with Information on Temporal Relevance

by itself unsatisfiable from an execution of Alg. 1. The general idea of the construction is unsurprising
in that during the execution of Alg. 1 a resolution graph is built that records which clauses were used to
generate other clauses (Def. 1). Then the resolution graph is traversed backwards from the empty clause
to find the subset of C that was actually used to prove unsatisfiability (Def. 2). The main concern of
Def. 1, 2, and their proof of correctness in Thm. 1 (see [35]) is therefore that certain parts of the TR
proof do not need to be taken into account when determining Cuc.

Definition 1. [35] A resolution graph G is a directed graph consisting of 1. a set of vertices V , 2. a set of
directed edges E ⊆V ×V , 3. a labeling of vertices with SNF clauses LV : V → C, and 4. a partitioning
QV of the set of vertices V into one main partition MV and one partition LV

i for each BFS loop search
iteration: QV : V = MV]LV

0] . . .]LV
n .1 Let C be a set of SNF clauses. During an execution of Alg. 1

with input C a resolution graph G is constructed as follows.
In line 1 G is initialized: 1. V contains one vertex v per clause c in C: V = {vc | c ∈ C}, 2. E is

empty: E = /0, 3. each vertex is labeled with the corresponding clause: LV : V → C,LV (vc) = c, and
4. the partitioning QV contains only the main partition MV , which contains all vertices: QV : MV =V .

Whenever a new BFS loop search iteration is entered (line 11), a new partition LV
i is created and

added to QV . For each application of a production rule from Tab. 2 that either generates a new clause
in partition M or L or is the first application of rule BFS-loop-it-sub to clause c′′ in C′′ in line 15: 1. if
column 12 (vt. c) of Tab. 2 contains 4, then a new vertex v is created for the conclusion c (which is a
new clause), labeled with c, and put into partition MV or LV

i ; 2. if column 8 (p.1 – c) (resp. column 10
(p.2 – c)) contains 4, then an edge is created from the vertex labeled with premise 1 (resp. premise 2) in
partition MV or LV

i to the vertex labeled with the conclusion in partition MV or LV
i .

Definition 2. [35] Let C be a set of SNF clauses to which Alg. 1 has been applied and shown unsatisfi-
ability, let G be the resolution graph, and let v2 be the (unique) vertex in the main partition MV of the
resolution graph G labeled with the empty clause 2. Let G′ be the smallest subgraph of G that contains
v2 and all vertices in G (and the corresponding edges) that are backward reachable from v2. The UC of
C in SNF, Cuc, is the subset of C such that there exists a vertex v in the subgraph G′, labeled with c ∈C,
and contained in the main partition MV of G: Cuc = {c ∈C | ∃v ∈VG′ . LV (v) = c∧ v ∈MV}.
Theorem 1. [35] Let C be a set of SNF clauses to which Alg. 1 has been applied and shown unsatisfia-
bility, and let Cuc be the UC of C in SNF. Then Cuc is unsatisfiable.

We now lift the extraction of UCs from SNF to LTL by restating the translation from LTL to SNF
and the mapping from a UC in SNF back to LTL from [35].

Definition 3. [35] Let φ be an LTL formula over atomic propositions AP, and let X = {x,x′, . . .} be a
set of fresh atomic propositions not in AP. Assign each occurrence of a subformula ψ in φ a Boolean
value or a proposition according to col. 2 of Tab. 3, which is used to reference ψ in the SNF clauses for
its superformula. Moreover, assign each occurrence of ψ a set of SNF clauses according to col. 3 or 4
of Tab. 3. Let SNFaux(φ) be the set of all SNF clauses obtained from φ that way. Then the SNF of φ is
defined as SNF(φ)≡ xφ ∧

∧
c∈SNFaux(φ) c.

Definition 4. [35] Let φ be an unsatisfiable LTL formula, let SNF(φ) be its SNF, and let Cuc be the UC of
SNF(φ) in SNF. Then the UC of φ in LTL, φ uc, is obtained as follows. For each positive (resp. negative)
polarity occurrence of a proper subformula ψ of φ with proposition xψ according to Tab. 3, replace
ψ in φ with 1 (resp. 0) iff Cuc contains no clause with an occurrence of proposition xψ that is marked
blue boxed in Tab. 3. (We are sloppy in that we “replace” subformulas of replaced subformulas, while
in effect they simply vanish.)

1] denotes disjoint union of sets.

V. Schuppan 55

Subf. Prop. SNF Clauses (positive polarity occurrences) SNF Clauses (negative polarity occurrences)

1/0/p 1/0/p — —
¬ψ x¬ψ (G(x¬ψ → (¬ xψ))) (G((¬x¬ψ)→ xψ))

ψ ∧ψ ′ x
ψ∧ψ ′ (G(x

ψ∧ψ ′ → xψ)), (G(x
ψ∧ψ ′ → x

ψ ′)) (G((¬x
ψ∧ψ ′)→ ((¬ xψ)∨ (¬ x

ψ ′))))

ψ ∨ψ ′ x
ψ∨ψ ′ (G(x

ψ∨ψ ′ → (xψ ∨ x
ψ ′))) (G((¬x

ψ∨ψ ′)→ (¬ xψ))), (G((¬x
ψ∨ψ ′)→ (¬ x

ψ ′)))

Xψ xXψ (G(xXψ → (X xψ))) (G((¬xXψ)→ (X¬ xψ)))

Gψ xGψ (G(xGψ → (XxGψ))), (G(xGψ → xψ)) (G((¬xGψ)→ (F¬ xψ)))

Fψ xFψ (G(xFψ → (F xψ))) (G((¬xFψ)→ (X¬xFψ))), (G((¬xFψ)→ (¬ xψ)))

ψUψ ′ x
ψUψ ′ (G(x

ψUψ ′ → (x
ψ ′ ∨ xψ))), (G(x

ψUψ ′ → (x
ψ ′ ∨ (Xx

ψUψ ′)))), (G((¬x
ψUψ ′)→ (¬ x

ψ ′))), (G((¬x
ψUψ ′)→ ((¬ xψ)∨ (X¬x

ψUψ ′))))

(G(x
ψUψ ′ → (F x

ψ ′)))

ψRψ ′ x
ψRψ ′ (G(x

ψRψ ′ → x
ψ ′)), (G(x

ψRψ ′ → (xψ ∨ (Xx
ψRψ ′)))) (G((¬x

ψRψ ′)→ ((¬ x
ψ ′)∨ (¬ xψ)))), (G((¬x

ψRψ ′)→ ((¬ x
ψ ′)∨ (X¬x

ψRψ ′)))),

(G((¬x
ψRψ ′)→ (F¬ x

ψ ′)))

Table 3: Translation from LTL to SNF.

Theorem 2. [35] Let φ be an unsatisfiable LTL formula, and let φ uc be the UC of φ in LTL. Then φ uc is
unsatisfiable.

In Fig. 1 we show an example of an execution of the TR algorithm with the corresponding resolution
graph and UC extraction in SNF. The set of SNF clauses C to be solved contains a, G((¬a)∨Xb),
G((¬b)∨Xa), G((¬a)∨¬c), G((¬c)∨X¬a), and G(Fc). The first three clauses a, G((¬a)∨Xb),
and G((¬b)∨Xa) force a to be 1 at even time points. This is contradicted by the last three clauses
G((¬a)∨¬c), G((¬c)∨X¬a), and G(Fc): they require that a eventually becomes 0 for two consecutive
time points. Clearly, C is unsatisfiable. This example is based on the same idea as (4) in Sec. 5. However,
the SNF obtained by our translation from LTL to SNF for (4) is larger than C, with the corresponding
figure harder to fit on one page.

In Fig. 1 the TR algorithm proceeds from bottom to top. Clauses are connected with edges according
to cols. 8 and 10 of Tab. 2 and labeled with the corresponding production rules, where “BFS-loop” is
abbreviated to “loop”, “init” to “i”, and “conclusion” to “conc”. In the first row from the bottom (in the
light red shaded rectangle) are the starting clauses from C. In the top right corner is the empty clause
2 signaling unsatisfiability of C. Row 2 contains the clauses resulting from the first round of saturation
(line 2 in Alg. 1) and from augmentation (line 3).2 The second round of saturation (line 4) produces no
new clauses. The dark green shaded rectangle is the partition for the first iteration of a loop search for a
loop in ¬c. Row 3 contains the result of loop search initialization (line 11) and row 4 the clauses obtained
by restricted saturation (line 12). As none of the clauses in row 4 subsumes 2, this iteration terminates
without having found a loop. The second loop search iteration is in the light green shaded rectangle.
Again row 5 contains the result of loop search initialization and row 6 the clauses obtained by restricted
saturation. This time the subsumption test is successful (lines 13–15), and row 7 shows the loop search
conclusions (line 18). The last row finally contains the derivation of 2 by saturation (line 19).

The clauses that are backward reachable from 2 are shown in blue with blue, thick, dashed boxes.
The corresponding edges are thick, blue or red, and dashed or dotted. The resulting UC comprises all
clauses in C (note that this example shows the mechanism rather than the benefits of extracting UCs).

The distinction between blue, dashed and red, dotted edges as well as the sets of time points shown
in black boxes are needed when sets of time points are added in Sec. 6. Please ignore those for now.

2While it may seem that some clauses are not considered for loop initialization or saturation, this is due to either subsumption
of one clause by another (e.g., G((¬wc)∨X(c∨wc)) by G(c∨wc)) or the fact that TRP++ uses ordered resolution (e.g., a with
G((¬a)∨¬c); [24]). Both are issues of completeness of TR and, therefore, not discussed in this paper.

56 Enhancing Unsatisfiable Cores for LTL with Information on Temporal Relevance

a
{0}

G((¬a)∨¬c)

2·N

G((¬b)∨Xa)

2·N+1

G((¬c)∨X¬a)

2·N+1

G((¬a)∨Xb)

2·N

G(Fc)

{0}

G((¬b)∨¬c) 2·N+1 G((¬wc)∨X(c∨wc)) G(c∨wc)

G(X((¬a)∨¬c))

G(Xc)

G((¬b)∨Xa)

G(X((¬b)∨¬c))

G((¬c)∨X¬a)

G((¬a)∨Xb)

G(X(c∨wc))

G(X¬a) G(¬b) G(X¬b) G(¬a)

G(X((¬a)∨¬c))

2·N+1

G(X((¬a)∨ c))

2·N+1 G((¬b)∨Xa)

2·N+1

G(X((¬b)∨ c))

2·N G(X((¬b)∨¬c))

2·N

G((¬c)∨X¬a)

G((¬a)∨Xb)

2·N

G(X(c∨wc))

G(X¬a)

2·N+1

G(¬b) 2·N+1 G(X¬b)

2·N

G(¬a)

2·N

G((¬wc)∨X((¬b)∨ c)) G((¬b)∨ c) G((¬a)∨ c)

{0}

G((¬wc)∨X((¬a)∨ c))

G(¬a)

{0}

2

{0}

starting
clauses

1st loop
search
iteration

2nd loop
search
iteration

st
ep

-x
x

step-xx

au
g1

lo
op

-it
-i-

xloop-it-i-n

lo
op

-it
-i-

n

loop-it-i-n

ste
p-

xx

ste
p-xx

step-xx

st
ep

-x
x

step-xx

ste
p-xx

step-xx

ste
p-

xx

step-xx

st
ep

-x
x

step-xx

ste
p-

xx

step-xx

ste
p-

xx

step-xx

loop-it-sub

lo
op

-c
on

c2loop-conc1

loop-conc2

lo
op

-c
on

c1

step-nn

init-in
in

it-
in

st
ep

-n
n

loo
p-

it-
i-n

loop-it-i-n
loop-it-sub

loop-conc1

loop-conc1

loop-it-i-x

loop-it-i-x

step-xx
loo

p-
it-

i-n

lo
op

-i
t-

i-
x

loop-it-i-x

lo
op

-i
t-

i-
x

Figure 1: Example of an execution of the TR algorithm with corresponding resolution graph and UC
extraction in SNF with sets of time points.

5 LTL with Sets of Time Points (LTLp)

In this section we propose a notation that allows to integrate more detailed information from a resolution
proof of the unsatisfiability of some LTL formula φ into the UC φ uc. The information we are interested
in are the time points at which a part of an LTL formula is needed to prove unsatisfiability. Hence, we
assign to each subformula a set of time points that indicates at which time points that subformula will be
evaluated; at other time points the subformula is considered to be 1 or 0 depending on polarity. Note that
this can be seen as an extension of a notion of UC in [36], where subformulas are replaced with 1 or 0
depending on polarity. We wish to emphasize that it is not our goal to introduce a “new logic”, but merely
to suggest a notation with well defined semantics that allows to smoothly integrate such information.

Definition 5. The set of LTLp formulas is constructed inductively as follows. The Boolean constants 0
(false), 1 (true) ∈ B and any atomic proposition p ∈ AP are LTLp formulas. If I, I′ ⊆N are sets of time
points and if τ , τ ′ are LTLp formulas, so are ¬

I
τ (not), τ ∨

I,I′
τ ′ (or), τ ∧

I,I′
τ ′ (and), X

I
τ (next time), τ U

I,I′
τ ′

V. Schuppan 57

formula positive polarity negative polarity

(π, i) |= 1 (resp. 0) ⇔ 1 (resp. 0) 1 (resp. 0)
(π, i) |= p ⇔ p ∈ π[i] p ∈ π[i]

(π, i) |= ¬
I

τ ⇔ (i 6∈ I)∨ ((π, i) 6|= τ) (i ∈ I)∧ ((π, i) 6|= τ)

(π, i) |= τ ∨
I,I′

τ ′ ⇔ ((i 6∈ I)∨ ((π, i) |= τ))∨ ((i 6∈ I′)∨ ((π, i) |= τ ′)) ((i ∈ I)∧ ((π, i) |= τ))∨ ((i ∈ I′)∧ ((π, i) |= τ ′))

(π, i) |= τ ∧
I,I′

τ ′ ⇔ ((i 6∈ I)∨ ((π, i) |= τ))∧ ((i 6∈ I′)∨ ((π, i) |= τ ′)) ((i ∈ I)∧ ((π, i) |= τ))∧ ((i ∈ I′)∧ ((π, i) |= τ ′))

(π, i) |= X
I

τ ⇔ (i+1 6∈ I)∨ ((π, i+1) |= τ) (i+1 ∈ I)∧ ((π, i+1) |= τ)

(π, i) |= τ U
I,I′

τ ′ ⇔ ∃i′ ≥ i . (((i′ 6∈ I′)∨ ((π, i′) |= τ ′))∧ (∀i≤ i′′ < i′ . ((i′′ 6∈ I)∨ ((π, i′′) |= τ)))) ∃i′ ≥ i . (((i′ ∈ I′)∧ ((π, i′) |= τ ′))∧ (∀i≤ i′′ < i′ . ((i′′ ∈ I)∧ ((π, i′′) |= τ))))

(π, i) |= τ R
I,I′

τ ′ ⇔ ∀i′ ≥ i . (((i′ 6∈ I′)∨ ((π, i′) |= τ ′))∨ (∃i≤ i′′ < i′ . ((i′′ 6∈ I)∨ ((π, i′′) |= τ)))) ∀i′ ≥ i . (((i′ ∈ I′)∧ ((π, i′) |= τ ′))∨ (∃i≤ i′′ < i′ . ((i′′ ∈ I)∧ ((π, i′′) |= τ))))

(π, i) |= F
I

τ ⇔ ∃i′ ≥ i . ((i′ 6∈ I)∨ ((π, i′) |= τ)) ∃i′ ≥ i . ((i′ ∈ I)∧ ((π, i′) |= τ))

(π, i) |= G
I

τ ⇔ ∀i′ ≥ i . ((i′ 6∈ I)∨ ((π, i′) |= τ)) ∀i′ ≥ i . ((i′ ∈ I)∧ ((π, i′) |= τ))

Table 4: Semantics of LTLp. π is a word in (2AP)ω , i is a time point in N.

(until), τ R
I,I′

τ ′ (releases), F
I
τ (finally), and G

I
τ (globally). τ→

I,I′
τ ′ (implies) abbreviates ¬

I
τ ∨

I,I′
τ ′.

We now recursively define the semantics of an LTLp formula at time points i ∈ N of a word π ∈
(2AP)ω . Note that the semantics depends on the polarity of the occurrence of a subformula. The intuition
for the semantics is that if a time point i is not contained in a set I, then the corresponding operand at that
time point cannot be used to establish unsatisfiability.

Definition 6. The semantics of LTLp is given in Tab. 4. π satisfies a formula φ iff the formula holds at
the beginning of π: π |= φ ⇔ (π,0) |= φ .

Our definition leaves the top level formula without a set of time points. This is justified, as the only
useful value there is {0}; it is required for satisfaction of an LTLp formula in Def. 6. In Remark 1 we
state some properties of LTLp.

Remark 1. 1. An LTLp formula θ s.t. all sets of time points are N is equivalent to the LTL formula
that one obtains from θ by removing all sets of time points. 2. An LTLp formula θ with a positive
(resp. negative) polarity subformula τ , where τ is neither a Boolean constant nor an atomic proposition,
s.t. all sets of time points of the top level operator of τ are /0 is equivalent to θ with τ replaced with 1
(resp. 0). 3. If θ and χ are two LTLp formulas s.t. θ and χ differ only in their sets of time points, and all
sets of time points in χ are (possibly non-strict) supersets of those in θ , then χ →

N,N
θ . 4. LTLp with sets

of time points restricted to semilinear sets is no more expressive than QLTL (for QLTL see, e.g., [17]).

We now illustrate LTLp with an example (4), (5) that is somewhat more involved than (1)–(3) in
Sec. 1. The example is still artificial to allow focusing on sets of time points. The first conjunct, p, and the
second conjunct, G(p→ XXp), force p to be 1 at even time points. The third conjunct, F((¬p)∧X¬p),
requires that eventually p is 0 at two consecutive time points. Clearly, the first two conjuncts contradict
the third, i.e., (4) is unsatisfiable. We would now like to obtain small sets of time points that are still suf-
ficient for (4) to be unsatisfiable. The three conjuncts p, G(p→ XXp), and F((¬p)∧X¬p) are evaluated
only at time point 0. The operand of the second conjunct, p→ XXp, needs to be evaluated only at even
time points and, therefore, also both operands of the→ operator. Consequently, it is sufficient to evaluate
Xp at odd time points and its operand, p, at even time points > 0. The last conjunct is more complicated.
The operand of the F operator has to be evaluated at every time point; otherwise, F((¬p)∧X¬p) would
evaluate to 1. Now note that at each time point one of the two conjuncts of (¬p)∧X¬p must contradict
a p induced by p∧ (G(p→ XXp)). At time point 0 this can only be the first conjunct, ¬p. Hence, if
the first conjunct, ¬p, is evaluated at even time points and the second conjunct, X¬p, is evaluated at odd

58 Enhancing Unsatisfiable Cores for LTL with Information on Temporal Relevance

time points, then unsatisfiability is preserved. The resulting LTLp formula is shown in (5). We call (5) a
UC of (4) in LTL with sets of time points.

p∧ (G(p→ XXp))∧ (F((¬p)∧X¬p)) (4) p ∧
{0},{0}

((G
2·N

(p →
2·N,2·N

X
2·N+1

X
2·N+2

p)) ∧
{0},{0}

(F
N
((¬

2·N
p) ∧

2·N,2·N+1
X

2·N+2
¬

2·N+2
p))) (5)

6 UC Extraction with Sets of Time Points

In this section we show how to enhance a UC in SNF and in LTL with the sets of time points at which its
clauses or subformulas are used in its TR proof of unsatisfiability.

Let C be a set of SNF clauses to which Alg. 1 has been applied and shown unsatisfiability, let G be
the resolution graph, let G′ be the subgraph according to Def. 2 with corresponding UC in SNF Cuc, and
let v2 denote the vertex in the main partition that is LV -labeled with 2. We start in Def. 7 with labeling
edges of G′ with 1 if the source vertex is time-shifted one step into the future with respect to the target
vertex (e.g., when a global clause with empty X part is used in step-nx) and all other edges with 0. Then,
in Def. 8, we obtain a set of time points for each vertex in G′ by assigning time point 0 to v2 (i.e., the
contradiction is assumed to happen at time point 0). Any other vertex v is assigned the set of the sums of
the time steps that occur on any path from v to v2 in G′.

Definition 7. LE ′ is a labeling of the set of edges in G′, E ′, with time steps in {0,1} that maps an edge e
to 1 if the corresponding column 9 (t.s. 1) or 11 (t.s. 2) in Tab. 2 contains a 4 and to 0 otherwise.

Definition 8. Let the edges of G′ be LE ′-labeled. L′V ′ is another labeling of the set of vertices in G′, V ′,
with sets of time points in 2N as follows. v2 is L′V ′-labeled with {0}. Any other vertex v is L′V ′-labeled
with a set of time points I that contains a time point i iff there exists a path π in G′ from v to v2 such that
the sum of the LE ′-labels of π is i.

We now continue the example in Fig. 1. Edges in the subgraph backward reachable from v2
that involve a time step of 1 between source and target vertex according to cols. 9 and 11 of Tab. 2
are marked red, dotted. Backward reachable edges that involve no such time step are marked blue,
dashed. In the backward reachable subgraph there are four edges that involve a time step of 1 between
source and target vertex. Two of those originate from instances of BFS-loop-it-init-n : from G((¬a)∨¬c)
in row 1 to G(X((¬a)∨¬c)) in row 5 and from G((¬b)∨¬c) in row 2 to G(X((¬b)∨¬c)) in row
5. Two others come from instances of BFS-loop-it-sub : from G(¬b) to G(X((¬b)∨ c)) and from
G(¬a) to G(X((¬a)∨ c)), both from row 6 to row 5. Furthermore, there are two edges from in-
stances of BFS-loop-conclusion2 that would be labeled with a time step of 1, if they were backward reach-
able from v2: from G(¬b) (row 6) to G((¬wc)∨X((¬b)∨ c)) (row 7) and from G(¬a) (row 6) to
G((¬wc)∨X((¬a)∨ c)) (row 7). Figure 1 contains no edges induced by an instance of step-nx . Notice
how in each case the literals that are taken from the source vertex and put into the target vertex are in the
X part of the target vertex while they are not in the X part of the source vertex; this is not the case for
pairs of source and target vertex connected by an edge that is (or would be) labeled with time step 0.

Each clause c in the backward reachable subgraph is labeled with a set of time points (shown in a
black box) obtained by counting the number of red, dotted edges that are traversed on any — possibly
looping — path from vc to v2 according to Def. 8. For example, a in row 1 can only reach 2 directly
via a blue, dashed edge, leading to set of time points {0} (which is the only one making sense for an
initial clause; see Lemma 1). Similarly, G(¬a) (row 8), G((¬a)∨ c) (row 7), and G(Fc) (row 1) can only
reach 2 via sequences of blue, dashed edges, so they are also labeled with {0}. Only one of the clauses
comprising the second loop search iteration (rows 5 and 6 in the light green shaded rectangle) can reach
2 without passing through any other clause in rows 5 or 6, namely G(¬a) (row 6) via a sequence of

V. Schuppan 59

blue, dashed edges. I.e., its set of time points must contain {0}. However, G(¬a) is also part of the loop
G(¬a)–G(X((¬a)∨ c))–G(X¬a)–G(¬b)–G(X((¬b)∨ c))–G(X¬b)–G(¬a) that involves a time step of
1 between G(¬a) and G(X((¬a)∨ c)) as well as between G(¬b) and G(X((¬b)∨ c)). Hence, for each
even i there exists a path such that G(¬a) can reach 2 on that path and that path contains i edges involv-
ing time steps of 1. Consequently, G(¬a) is labeled with 2·N. The same holds for all vertices in rows 5
and 6 that are either on the loop between G(X((¬b)∨ c)) and G(¬a) or backward reachable from those
via blue, dashed edges: G(X((¬b)∨ c)), G(X¬b), G(X((¬b)∨¬c)), and G((¬a)∨Xb). Analogously
all vertices in rows 5 and 6 that are on the loop between G(X((¬a)∨ c)) and G(¬b) or backward reach-
able from those via blue, dashed edges are labeled with 2·N+ 1: G(X((¬a)∨ c)), G(X¬a), G(¬b),
G(X((¬a)∨¬c)), and G((¬b)∨Xa). Finally, consider G((¬a)∨¬c) in row 1. It reaches 2 via G(¬a)
traversing no red, dotted edge, giving {0}. However, there is also the set of paths through the partition
of the second loop search iteration, which uses 2·N+ 2 red, dotted edges. Taking both contributions
together we obtain 2·N for this clause.

From now on we assume in this section that the edges and vertices of G′ are labeled according to
Def. 7 and 8. The following two lemmas are needed to prove correctness of UC extraction in SNF with
sets of time points in Thm. 3. They can easily be proved from Def. 7, 8. Proposition 1 establishes that the
sets of time points obtained in Def. 8 are semilinear (as suggested for tableaux in [36]). The construction
in its proof will later be a fundamental step to actually compute the sets of time points.
Lemma 1. Any vertex v in G′ that is LV -labeled with an initial clause is L′V ′-labeled with {0}.
Lemma 2. For each pair of vertices v,v′ in G′ such that there is an edge from v to v′ in G′, the labeling
L′V ′(v

′) is a (premise 1 of step-nx , BFS-loop-it-init-n , BFS-loop-it-sub , BFS-loop-conclusion2 : time-shifted) subset
of the labeling L′V ′(v).
Proposition 1. For each vertex v in G′ the labeling L′V ′(v) is a semilinear set.

Proof. For each vertex v turn the graph G′ into a transition-labeled nondeterministic finite automaton
(NFA) on finite words over {0,1} as follows: (i) The set of states is the set of vertices of the graph G′, V ′.
(ii) The set of transitions is the set of reversed edges of the graph G′. (iii) The labeling of the transitions
is given by the LE ′-labeling of the corresponding edges. (iv) The (only) initial state is v2. (v) The (only)
final state is v. Now it’s clear from Def. 8 that the L′V ′-labeling of the vertex v is the Parikh image of
the letter 1 of the regular language given by the automaton. The claim follows from Parikh’s theorem
[28].

We now define UCs in SNF with sets of time points. To simplify notation we first define what it
means to assign a set of time points to an SNF clause (Def. 9). The definition of a UC in SNF with sets
of time points is then immediate in Def. 10. Given the proof of Thm. 1 (see [35]) the proof of correctness
in Thm. 3 (in App. B of [34]) can focus on why the construction remains correct with sets of time points.
In Prop. 2 we state an upper bound on the complexity of extracting a UC in SNF with sets of time points.
Definition 9. Let I be a set of time points. Let c be an SNF clause. Then c with set of time points I, c

I
, is

the following LT Lp formula:3

c
I
=



((¬
I
)p1 ∨

I,I
. . . ∨

I,I
(¬

I
)pn) if c = ((¬)p1 ∨ . . .∨ (¬)pn) is an initial clause; or

(G
I
((¬

I
)p1 ∨

I,I
. . . ∨

I,I
(¬

I
)pn ∨

I,I
(X

I+1
(¬

I+1
)q1 ∨

I+1,I+1
. . . ∨

I+1,I+1
(¬

I+1
)qn′)))

if c = (G(((¬)p1 ∨ . . .∨ (¬)pn)∨ (X((¬)q1 ∨ . . .∨ (¬)qn′)))) is a global clause; or

(G
I
(((¬

I
)p1 ∨

I,I
. . . ∨

I,I
(¬

I
)pn) ∨

I,I
(F
[min(I),∞)

((¬
[min(I),∞)

)l)))) if c = (G(((¬)p1 ∨ . . .∨ (¬)pn)∨ (F((¬)l)))) is an eventuality clause.

3In this definition (¬) indicates a negation that may or may not be present.

60 Enhancing Unsatisfiable Cores for LTL with Information on Temporal Relevance

Definition 10. Let c1,1, . . . ,c1,n1 be the initial clauses in Cuc, c2,1, . . . ,c2,n2 the global clauses in Cuc, and
c3,1, . . ., c3,n3 the eventuality clauses in Cuc. Let vm,m′ be the unique vertex in the main partition M of G′

LV -labeled with clause cm,m′ . Let Im,m′ be the set of time points that vertex vm,m′ is L′V ′-labeled with in G′.
The UC of C in SNF with sets of time points, θ uc, is given by

c1,1
I1,1

∧
{0},{0}

. . . ∧
{0},{0}

c1,n1
I1,n1

∧
{0},{0}

c2,1
I2,1

∧
{0},{0}

. . . ∧
{0},{0}

c2,n2
I2,n2

∧
{0},{0}

c3,1
I3,1

∧
{0},{0}

. . . ∧
{0},{0}

c3,n3
I3,n3

.

Theorem 3. Let θ uc be the UC of C in SNF with sets of time points. Then θ uc is unsatisfiable.

Proposition 2. Let θ uc be the UC of C in SNF with sets of time points. Construction of θ uc from G′ can
be performed in time O(|V ′|3 + |V ′|2 · |C|).

Proof. (Sketch) Construct an NFA from G′ along the lines of the proof of Prop. 1. Turn the NFA into
a unary NFA by regarding edges LE ′-labeled with 0 as ε-edges and making the NFA ε-free (e.g., [23]).
Finally, use an algorithm by Gawrychowski [20] extended to handle all final states in parallel to compute
sets of time points.

We now apply Def. 10 to the example in Fig. 1 and obtain (6) as a UC in SNF with sets of time
points. Notice, that all occurrences of a occur at even time points and how both occurrences of b interact
at odd time points. Moreover, the last clause shows that only a single occurrence of c is required for
unsatisfiability. Finally, the fourth clause has ¬c at even time points, while the fifth clause becomes
relevant at odd time points; thus all potential occurrences of c are covered. This concludes this example.

a ∧
{0},{0}

(G
2·N

((¬
2·N

a) ∨
2·N,2·N

X
2·N+1

b)) ∧
{0},{0}

(G
2·N+1

((¬
2·N+1

b) ∨
2·N+1,2·N+1

X
2·N+2

a))

∧
{0},{0}

(G
2·N

((¬
2·N

a) ∨
2·N,2·N

¬
2·N

c)) ∧
{0},{0}

(G
2·N+1

((¬
2·N+1

c) ∨
2·N+1,2·N+1

X
2·N+2

¬
2·N+2

a)) ∧
{0},{0}

(G
{0}

(F
N

c))
(6)

Definition 11 adds sets of time points to a UC in LTL by transferring them from a UC in SNF with
time points to a UC in LTL. The proof idea for Thm. 4 (in App. B of [34]) is similar to that of Thm. 2 (see
[35]), but in addition we need to define a translation from the corresponding fragment of LTLp to SNF
with sets of time points, which must be shown to be satisfiability- but not unsatisfiability-preserving.

Definition 11. Let φ be an unsatisfiable LTL formula, let SNF(φ) be its SNF, let φ uc be the UC of φ in
LTL, and let θ uc be the UC of SNF(φ) in SNF with sets of time points. Construct the UC of φ in LTL
with sets of time points, θ ′uc, by assigning a set of time points I to each occurrence of a subformula ψ in
φ uc as follows. Let I′, I′′, . . . be the sets of time points of the occurrences of the proposition xψ in θ uc that
are marked blue boxed in Tab. 3. Then assign the occurrence of ψ in φ uc the set of time points I that is
the union of I′, I′′,

Theorem 4. Let φ be an unsatisfiable LTL formula, and let θ ′uc be the UC of φ in LTL with sets of time
points. Then θ ′uc is unsatisfiable.

It’s easy to see that no subformula in (1) or (4) can be replaced with 1 (for positive polarity occur-
rences) or 0 (for negative polarity occurrences) without making (1) or (4) satisfiable. I.e., (1) or (4) are
the only UCs of themselves according to Def. 10 in [36] (and, hence, according to Def. 4). The corre-
sponding UCs in LTL with sets of time points in (3) and (5) show that UCs with sets of time points can
be more fine-grained than UCs without.

V. Schuppan 61

(¬u)∧ (f0)∧ (¬b0)∧ (¬b1)∧ (¬up) (7a)
∧ (G((u→¬Xu)∧ ((¬Xu)→ u))) (7b)
∧ (G(f0→¬ f1)) (7c)
∧ (G((f0→ X(f0 ∨ f1))∧ (f1→ X(f0 ∨ f1)))) (7d)
∧ (G(u→ ((f0→ X f0)∧ ((X f0)→ f0)∧ (f1→ X f1)∧ ((X f1)→ f1)))) (7e)

∧ (G(((¬u)→
((b0→ Xb0)∧ ((Xb0)→ b0)∧ (b1→ Xb1)∧ ((Xb1)→ b1)))))

(7f)

∧ (G(((b0 ∧¬ f0)→ Xb0)∧ ((b1 ∧¬ f1)→ Xb1))) (7g)

∧ (G((f0 ∧X f0)→ ((up→ Xup)∧ ((Xup)→ up)))) (7h)
∧ (G((f1 ∧X f1)→ ((up→ Xup)∧ ((Xup)→ up)))) (7i)
∧ (G(((f0 ∧X f1)→ up)∧ ((f1 ∧X f0)→¬up))) (7j)
∧ (G((sb→ (b0 ∨b1))∧ ((b0 ∨b1)→ sb))) (7k)
∧ (G(((f0 ∧¬sb)→ (f0U(sbR((F f0)∧ (¬up)))))) (7l)
∧ (G(((f1 ∧¬sb)→ (f1U(sbR((F f0)∧ (¬up)))))) (7m)
∧ (G((b0→ F f0)∧ (b1→ F f1))) (7n)

Figure 2: A lift specification.

7 Example

In this section we present an example that shows the utility of UCs with sets of time points for debugging
that is closer to a real world situation. The UCs in this as well as in all other examples in this paper were
obtained with our implementation, possibly except for minor rewriting.

The example (7) in Fig. 2 reuses the example of a lift specification from [35] (originally adapted
from [22]) but extends it with sets of time points to show that understanding the presence of a problem
becomes easier. The lift has two floors, indicated by f0 and f1. On each floor there is a button to call the
lift (b0, b1). sb is 1 if some button is pressed. If the lift moves up, then up must be 1; if it moves down,
then up must be 0. u switches turns between actions by users of the lift (u is 1) and actions by the lift (u
is 0). For a more detailed explanation we refer to [22].

We first assume that an engineer is interested in seeing whether it is possible that b1 is continuously
pressed (8). As the UC (9) shows this is impossible as b1 must be 0 at time point 0. Notice that (9)
indicates that the argument of the G operator is only needed at time point 0 (trivial to see in this case).

Gb1 (8) (¬
{0}

b1) ∧
{0},{0}

G
{0}

b1 (9)

Now the engineer modifies her query such that b1 is pressed only from time point 1 on (10). That is
impossible, too; as the UC in (11) shows also this time the press of b1 is required only at one time point.

XGb1 (10) (¬
{0}

u) ∧
{0},{0}

((¬
{0}

b1) ∧
{0},{0}

((G
{0}

((¬
{0}

u) →
{0},{0}

((X
{1}

b1) →
{0},{0}

b1))) ∧
{0},{0}

(X
{1}

G
{1}

b1))) (11)

The engineer now tries to have b1 pressed only from time point 2 on and also obtains a UC that needs
b1 pressed only at a single time point (not shown). She becomes suspicious and checks whether b1 can be
pressed at all. She now sees that b1 cannot be pressed at any time point and, therefore, this specification
of a lift must contain a bug. This example illustrates the benefits of UCs with sets of time points, as (9)
and (11) make it clear that b1 being 1 is only needed at a single time point for unsatisfiability.

For an example showing disjuncts of an invariant holding at different time points and for an example
from the business process domain see App. C of [34].

8 Experimental Evaluation

We use the version of TRP++ extended with extraction of UCs from [35] as the basis for our implemen-
tation. We implemented extraction of sets of time points along the lines of the proofs of Prop. 1, 2. To
make an NFA ε-free we use a standard algorithm that performs DFS from each state to find the sets of
states that are reachable via a sequence of ε-edges, inserts 1-edges between pairs of vertices v, v′ such
that v can reach v′ by reading ε∗1ε∗, and removes ε-edges (e.g., [23]). To compute Parikh images for
unary NFAs we implemented an algorithm by Gawrychowski [20] and one by Sawa [33]. Both assume

62 Enhancing Unsatisfiable Cores for LTL with Information on Temporal Relevance

category family source # solved UC w/o s.o.t.p. # solved UC w/ s.o.t.p. (Gawrychowski) # solved UC w/ s.o.t.p. (Sawa) |largest solved|
alaska lift [22, 39] 72 73 73 4605

application anzu genbuf [10] 16 16 16 1924
forobots [8] 25 25 25 635
schuppan O1formula [37] 27 27 27 4006

crafted schuppan O2formula [37] 8 7 7 91
schuppan phltl [37] 4 4 4 125
rozier formulas [32] 62 62 62 157random
trp [26] 397 397 397 1421

Table 5: Overview of benchmark families.

category family {0
}

{0
,1
}

{0
,1
,2
}

{0
,2
}

{1
}

{1
,2
}

{1
,2
,3
}

{1
,2
,3
,4
}

{1
,3
}

{1
,4
}

{2
}

{2
,3
}

{2
,3
,4
}

{3
}

{3
,4
}

{4
}
N

N
+

1
N

+
2

N
+

3
N

+
4

N
+

5
N

+
6

N
+

7,
..
.,

N
+

10
{4
·N

+
0}
,

..
.,

{4
·N

+
5}

{4
·N

+
1,

4·
N

+
2}

{4
·N

+
1,

4·
N

+
2,

4·
N

+
3}

{4
·N

+
2,

4·
N

+
3}

{4
·N

+
2,

4·
N

+
3,

4·
N

+
4}

{4
·N

+
3,

4·
N

+
4}

{5
·N

+
0}

,
..
.,

{5
·N

+
5}

{1
2·
N

+
0}
,

..
.,

{1
2·
N

+
12
}

alaska lift 4 4 4 4 4 4 4
application anzu genbuf 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4

forobots 4 4 4 4 4 4 4 4 4

schuppan O1formula 4 4
crafted schuppan O2formula 4 4 4

schuppan phltl 4 4 4 4 4 4 4 4 4

rozier formulas 4random
trp 4 4 4 4 4 4 4 4

Table 6: Occurrences of sets of time points in UCs: A 4 in a field indicates that a subformula in a UC of
that benchmark family is assigned that set of time points.

a single set of final states leading to a single Parikh image. We, however, have one final state for each
SNF clause in the UC in SNF, each of which we need to assign a separate Parikh image. We adapted
Gawrychowski’s algorithm to our setting by computing the Parikh images for different final states in
a single run of the algorithm. Similarly, we optimized Sawa’s algorithm by computing parts that are
common for different final states only once and by heuristically accelerating some of its steps.

Our examples are based on [37]. In categories crafted and random and in family forobots we
considered all unsatisfiable instances from [37]. The version of alaska lift used here contains a small
bug fix: in [39, 37] the subformula Xu was erroneously written as literal Xu. Combining 2 variants
of alaska lift with 3 different scenarios we obtain 6 subfamilies of alaska lift. For anzu genbuf we
invented 3 scenarios to obtain 3 subfamilies. For all benchmark families that consist of a sequence of
instances of increasing difficulty we stopped after two instances that could not be solved due to time
or memory out. Some instances were simplified to 0 during the translation from LTL to SNF; these
instances were discarded. In Tab. 5 we give an overview of the benchmark families. Columns 1–3 give
the category, name, and the source of the family. Columns 4–6 list the numbers of instances that were
solved by our implementation with UC extraction without sets of time points, with UC extraction with
sets of time points using Gawrychowski’s algorithm, and with UC extraction with sets of time points
using Sawa’s algorithm. Column 7 indicates the size (number of nodes in the syntax tree) of the largest
instance solved with UC extraction without sets of time points.

The experiments were performed on a laptop with Intel Core i7 M 620 processor at 2 GHz running
Ubuntu 12.04. Run time and memory usage were measured with run [9]. The time and memory limits
were 600 seconds and 6 GB.

In Fig. 3 (a) and (b) we show the overhead that is incurred by extracting UCs with sets of time points.
Figure 3 (c) and (d) compare using Gawrychowski’s and Sawa’s algorithm for computing sets of time
points. In Tab. 6 we show which sets of time points occur in the UCs of which benchmark families.

Our data show that extraction of UCs with sets of time points is possible with quite acceptable
overhead in run time and memory usage (Fig. 3 (a), (b)). In particular, out of the 698 instances we

V. Schuppan 63

 0.1

 1

 10

 100

to
 mo

 0.1 1 10 100 to mo

U
C

 e
x
tr

a
c
ti
o

n
 w

it
h

 s
e

ts
 o

f
ti
m

e
p

o
in

ts
 (

G
a

w
ry

c
h

o
w

s
k
i)

UC extraction without sets of time
points

1

10

100

1000

to
 mo

1 10 100 1000 to mo

U
C

 e
x
tr

a
c
ti
o

n
 w

it
h

 s
e

ts
 o

f
ti
m

e
p

o
in

ts
 (

G
a

w
ry

c
h

o
w

s
k
i)

UC extraction without sets of time
points

 0.1

 1

 10

 100

to
 mo

 0.1 1 10 100 to mo

U
C

 e
x
tr

a
c
ti
o

n
 w

it
h

 s
e

ts
 o

f
ti
m

e
p

o
in

ts
 (

S
a

w
a

)

UC extraction with sets of time
points (Gawrychowski)

1

10

100

1000

to
 mo

1 10 100 1000 to mo

U
C

 e
x
tr

a
c
ti
o

n
 w

it
h

 s
e

ts
 o

f
ti
m

e
p

o
in

ts
 (

S
a

w
a

)

UC extraction with sets of time
points (Gawrychowski)

(a) run time [sec] (b) memory [MB] (c) run time [sec] (d) memory [MB]

Figure 3: Overhead of UC extraction with sets of time points: (a) and (b) show run time and memory for
UC extraction with sets of time points using Gawrychowski’s algorithm (y-axis) versus UC extraction
without sets of time points (x-axis). (c) and (d) compare run time and memory for Sawa’s algorithm (y-
axis) and Gawrychowski’s algorithm (x-axis) for UC extraction with sets of time points. The off-center
diagonal in (a) and (b) shows where y = 2x.

considered with UC extraction without sets of time points, a UC was obtained for 611. With sets of time
points enabled one instance more4 and one instance less are solved. An analysis by category (for plots
see App. D of [34]) shows that the run time (resp., memory) overhead for almost all instances of the
application category is at most 50 % (resp., 100 %) for UC extraction with sets of time points using
Gawrychowski’s algorithm over UC extraction without sets of time points.

Sets of time points often provide helpful information. For some subfamilies of the anzu genbuf and
trp families they show that some subformulas are required only every 4th, 5th, or 12th time point. For an
instance of the forobots family they make it clear that only the first two time points are relevant, although
some of the subformulas involved are G subformulas. For the schuppan phltl family (a temporal version
of the pigeon hole problem; n pigeon holes are turned into a single pigeon hole over n time points) they
indicate how the conditions of mutual exclusivity for the hole are invoked one after the other.

Gawrychowski’s algorithm [20] has better worst case complexity than Sawa’s algorithm [33]. We
also found it easier to understand and implement. On our benchmarks Gawrychowski’s algorithm tends
to perform better than Sawa’s algorithm (Fig. 3 (c) and (d)), especially when the NFAs become larger.

9 Conclusions

In this paper we showed how to obtain information on the time points at which subformulas of a UC
for LTL are required for unsatisfiability, providing useful information in many cases and leading to a
more fine-grained notion of UC than in [36]. We demonstrated with an implementation in TRP++ that
UCs with sets of time points can be extracted efficiently. Potential future work includes extending the
computation of sets of time points to tableau-based UC extraction for LTL such as [21] and exploring
whether computation of sets of time points is feasible for BDD-based algorithms via, e.g., [27]. Other
questions are how to apply the idea of sets of time points to unrealizable cores for LTL (e.g., [36]) or
to branching time temporal logics. One could also investigate obtaining sets of time points by solving a
system of constraints over sets of time points based on Lemmas 1, 2 rather than the approach based on
Parikh images explored here. Finally, it would be interesting to see whether/how minimal or minimum
sets of time points can be obtained, where ≤ is set inclusion (rather than syntactic expression size).

4For this instance the run time with sets of time points is just below the time limit.

64 Enhancing Unsatisfiable Cores for LTL with Information on Temporal Relevance

Acknowledgements I thank B. Konev and M. Ludwig for making TRP++ and TSPASS including their LTL
translators available. I also thank A. Cimatti for bringing up the subject of temporal resolution and for pointing
out that the resolution graph can be seen as a regular language acceptor. Initial parts of the work were performed
while working under a grant by the Provincia Autonoma di Trento (project EMTELOS).

References

[1] Available at http://www.csc.liv.ac.uk/~konev/software/trp++/.

[2] Available at http://www.schuppan.de/viktor/qapl13/.

[3] R. Armoni, L. Fix, A. Flaisher, O. Grumberg, N. Piterman, A. Tiemeyer & M. Vardi (2003): Enhanced
Vacuity Detection in Linear Temporal Logic. In W. Hunt Jr. & F. Somenzi, editors: CAV, LNCS 2725,
Springer, pp. 368–380, doi:10.1007/978-3-540-45069-6 35.

[4] A. Awad, R. Goré, Z. Hou, J. Thomson & M. Weidlich (2012): An iterative approach to synthesize business
process templates from compliance rules. Inf. Syst. 37(8), pp. 714–736, doi:10.1016/j.is.2012.05.001.

[5] R. Bakker, F. Dikker, F. Tempelman & P. Wognum (1993): Diagnosing and Solving Over-Determined
Constraint Satisfaction Problems. In: IJCAI, pp. 276–281. Available at http://ijcai.org/Past%

20Proceedings/IJCAI-93-VOL1/PDF/039.pdf.

[6] I. Beer, S. Ben-David, H. Chockler, A. Orni & R. Trefler (2009): Explaining Counterexamples Using Causal-
ity. In A. Bouajjani & O. Maler, editors: CAV, LNCS 5643, Springer, pp. 94–108, doi:10.1007/978-3-642-
02658-4 11.

[7] I. Beer, S. Ben-David, C. Eisner & Y. Rodeh (2001): Efficient Detection of Vacuity in Temporal Model
Checking. FMSD 18(2), pp. 141–163, doi:10.1023/A:1008779610539.

[8] A. Behdenna, C. Dixon & M. Fisher (2009): Deductive Verification of Simple Foraging Robotic Behaviours.
Int. J. of Intelligent Comput. and Cybernetics 2(4), pp. 604–643, doi:10.1108/17563780911005818.

[9] A. Biere & T. Jussila: Benchmark Tool Run. Available at http://fmv.jku.at/run/.

[10] R. Bloem, S. Galler, B. Jobstmann, N. Piterman, A. Pnueli & M. Weiglhofer (2007): Specify, Compile, Run:
Hardware from PSL. In S. Glesner, J. Knoop & R. Drechsler, editors: COCV, ENTCS 190(4), Elsevier, pp.
3–16, doi:10.1016/j.entcs.2007.09.004.

[11] A. Chiappini, A. Cimatti, L. Macchi, O. Rebollo, M. Roveri, A. Susi, S. Tonetta & B. Vittorini (2010):
Formalization and validation of a subset of the European Train Control System. In J. Kramer, J. Bishop,
P. Devanbu & S. Uchitel, editors: ICSE (2), ACM, pp. 109–118, doi:10.1145/1810295.1810312.

[12] E. Clarke, M. Talupur, H. Veith & D. Wang (2003): SAT Based Predicate Abstraction for Hardware Verifica-
tion. In E. Giunchiglia & A. Tacchella, editors: SAT, LNCS 2919, Springer, pp. 78–92, doi:10.1007/978-3-
540-24605-3 7.

[13] C. Dixon (1995): Strategies for Temporal Resolution. Ph.D. thesis, Department of Computer Science, Uni-
versity of Manchester. Available at ftp://ftp.cs.man.ac.uk/pub/TR/UMCS-95-12-1.ps.Z.

[14] C. Dixon (1997): Using Otter for Temporal Resolution. In H. Barringer, M. Fisher, D. Gabbay & G. Gough,
editors: ICTL, Applied Logic Series, Kluwer, pp. 149–166.

[15] C. Dixon (1998): Temporal Resolution Using a Breadth-First Search Algorithm. Ann. Math. Artif. Intell.
22(1-2), pp. 87–115, doi:10.1023/A:1018942108420.

[16] C. Eisner & D. Fisman (2006): A Practical Introduction to PSL. Springer, doi:10.1007/978-0-387-36123-9.

[17] E. Emerson (1990): Temporal and Modal Logic. In J. van Leeuwen, editor: Handbook of Theoretical Com-
puter Science, Volume B: Formal Models and Sematics (B), Elsevier and MIT Press, pp. 995–1072.

[18] M. Fisher (1991): A Resolution Method for Temporal Logic. In: IJCAI, pp. 99–104. Available at http:
//ijcai.org/Past%20Proceedings/IJCAI-91-VOL1/PDF/017.pdf.

http://www.csc.liv.ac.uk/~konev/software/trp++/
http://www.schuppan.de/viktor/qapl13/
http://dx.doi.org/10.1007/978-3-540-45069-6_35
http://dx.doi.org/10.1016/j.is.2012.05.001
http://ijcai.org/Past%20Proceedings/IJCAI-93-VOL1/PDF/039.pdf
http://ijcai.org/Past%20Proceedings/IJCAI-93-VOL1/PDF/039.pdf
http://dx.doi.org/10.1007/978-3-642-02658-4_11
http://dx.doi.org/10.1007/978-3-642-02658-4_11
http://dx.doi.org/10.1023/A:1008779610539
http://dx.doi.org/10.1108/17563780911005818
http://fmv.jku.at/run/
http://dx.doi.org/10.1016/j.entcs.2007.09.004
http://dx.doi.org/10.1145/1810295.1810312
http://dx.doi.org/10.1007/978-3-540-24605-3_7
http://dx.doi.org/10.1007/978-3-540-24605-3_7
ftp://ftp.cs.man.ac.uk/pub/TR/UMCS-95-12-1.ps.Z
http://dx.doi.org/10.1023/A:1018942108420
http://dx.doi.org/10.1007/978-0-387-36123-9
http://ijcai.org/Past%20Proceedings/IJCAI-91-VOL1/PDF/017.pdf
http://ijcai.org/Past%20Proceedings/IJCAI-91-VOL1/PDF/017.pdf

V. Schuppan 65

[19] M. Fisher, C. Dixon & M. Peim (2001): Clausal temporal resolution. ACM Trans. Comput. Log. 2(1), pp.
12–56, doi:10.1145/371282.371311.

[20] P. Gawrychowski (2011): Chrobak Normal Form Revisited, with Applications. In B. Bouchou-
Markhoff, P. Caron, J. Champarnaud & D. Maurel, editors: CIAA, LNCS 6807, Springer, pp. 142–153,
doi:10.1007/978-3-642-22256-6 14.

[21] F. Hantry & M. Hacid (2011): Handling Conflicts in Depth-First Search for LTL Tableau to Debug
Compliance Based Languages. In E. Pimentel & V. Valero, editors: FLACOS, EPTCS 68, pp. 39–53,
doi:10.4204/EPTCS.68.5.

[22] A. Harding (2005): Symbolic Strategy Synthesis For Games With LTL Winning Conditions. Ph.D. thesis,
University of Birmingham.

[23] J. Hopcroft & J. Ullman (1979): Introduction to Automata Theory, Languages and Computation. Addison-
Wesley.

[24] U. Hustadt & B. Konev (2003): TRP++ 2.0: A Temporal Resolution Prover. In F. Baader, editor: CADE,
LNCS 2741, Springer, pp. 274–278, doi:10.1007/978-3-540-45085-6 21.

[25] U. Hustadt & B. Konev (2004): TRP++: A temporal resolution prover. In M. Baaz, J. Makowsky &
A. Voronkov, editors: Collegium Logicum, 8, Kurt Gödel Society, pp. 65–79.

[26] U. Hustadt & R. A. Schmidt (2002): Scientific Benchmarking with Temporal Logic Decision Procedures. In
D. Fensel, F. Giunchiglia, D. McGuinness & M. Williams, editors: KR, Morgan Kaufmann, pp. 533–546.

[27] T. Jussila, C. Sinz & A. Biere (2006): Extended Resolution Proofs for Symbolic SAT Solving with Quantifi-
cation. In A. Biere & C. Gomes, editors: SAT, LNCS 4121, Springer, pp. 54–60, doi:10.1007/11814948 8.

[28] R. Parikh (1966): On Context-Free Languages. J. ACM 13(4), pp. 570–581, doi:10.1145/321356.321364.
[29] M. Pesic & W. van der Aalst (2006): A Declarative Approach for Flexible Business Processes Management.

In J. Eder & S. Dustdar, editors: Business Process Management Workshops, LNCS 4103, Springer, pp.
169–180, doi:10.1007/11837862 18.

[30] I. Pill, S. Semprini, R. Cavada, M. Roveri, R. Bloem & A. Cimatti (2006): Formal analysis of hardware
requirements. In E. Sentovich, editor: DAC, ACM, pp. 821–826, doi:10.1145/1146909.1147119.

[31] K. Ravi & F. Somenzi (2004): Minimal Assignments for Bounded Model Checking. In K. Jensen & A. Podel-
ski, editors: TACAS, LNCS 2988, Springer, pp. 31–45, doi:10.1007/978-3-540-24730-2 3.

[32] K. Rozier & M. Vardi (2010): LTL satisfiability checking. STTT 12(2), pp. 123–137, doi:10.1007/s10009-
010-0140-3.

[33] Z. Sawa (2013): Efficient Construction of Semilinear Representations of Languages Accepted by Unary
Nondeterministic Finite Automata. Fundam. Inform. 123(1), pp. 97–106, doi:10.3233/FI-2013-802.

[34] V. Schuppan (2012): Enhancing Unsatisfiable Cores for LTL with Information on Temporal Relevance (full
version). Available at http://www.schuppan.de/viktor/qapl13/VSchuppan-QAPL-2013-full.pdf.

[35] V. Schuppan (2012): Extracting Unsatisfiable Cores for LTL via Temporal Resolution. Available at
arXiv:1212.3884v1 [cs.LO].

[36] V. Schuppan (2012): Towards a notion of unsatisfiable and unrealizable cores for LTL. Sci. Comput. Pro-
gram. 77(7-8), pp. 908–939, doi:10.1016/j.scico.2010.11.004.

[37] V. Schuppan & L. Darmawan (2011): Evaluating LTL Satisfiability Solvers. In T. Bultan & P. Hsiung, editors:
ATVA, LNCS 6996, Springer, pp. 397–413, doi:10.1007/978-3-642-24372-1 28.

[38] J. Simmonds, J. Davies, A. Gurfinkel & M. Chechik (2010): Exploiting resolution proofs to speed up LTL
vacuity detection for BMC. STTT 12(5), pp. 319–335, doi:10.1007/s10009-009-0134-1.

[39] M. De Wulf, L. Doyen, N. Maquet & J. Raskin (2008): Antichains: Alternative Algorithms for LTL Satisfi-
ability and Model-Checking. In C. Ramakrishnan & J. Rehof, editors: TACAS, LNCS 4963, Springer, pp.
63–77, doi:10.1007/978-3-540-78800-3 6.

http://dx.doi.org/10.1145/371282.371311
http://dx.doi.org/10.1007/978-3-642-22256-6_14
http://dx.doi.org/10.4204/EPTCS.68.5
http://dx.doi.org/10.1007/978-3-540-45085-6_21
http://dx.doi.org/10.1007/11814948_8
http://dx.doi.org/10.1145/321356.321364
http://dx.doi.org/10.1007/11837862_18
http://dx.doi.org/10.1145/1146909.1147119
http://dx.doi.org/10.1007/978-3-540-24730-2_3
http://dx.doi.org/10.1007/s10009-010-0140-3
http://dx.doi.org/10.1007/s10009-010-0140-3
http://dx.doi.org/10.3233/FI-2013-802
http://www.schuppan.de/viktor/qapl13/VSchuppan-QAPL-2013-full.pdf
http://arxiv.org/abs/1212.3884v1
http://dx.doi.org/10.1016/j.scico.2010.11.004
http://dx.doi.org/10.1007/978-3-642-24372-1_28
http://dx.doi.org/10.1007/s10009-009-0134-1
http://dx.doi.org/10.1007/978-3-540-78800-3_6

	1 Introduction
	2 Preliminaries
	3 Temporal Resolution (TR) in TRP++
	4 UC Extraction via TR
	5 LTL with Sets of Time Points (LTLp)
	6 UC Extraction with Sets of Time Points
	7 Example
	8 Experimental Evaluation
	9 Conclusions
	Acknowledgements

